Hygroscopic and phase separation properties of ammonium sulfate/organics/water ternary solutions
Author(s)
Zawadowicz, Maria Anna; Proud, Simon R.; Seppalainen, Sandra S.; Cziczo, Daniel James
DownloadZawadowicz-2015-Hygroscopic and phas.pdf (2.981Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Atmospheric aerosol particles are often partially or completely composed of inorganic salts, such as ammonium sulfate and sodium chloride, and therefore exhibit hygroscopic properties. Many inorganic salts have well-defined deliquescence and efflorescence points at which they take up and lose water, respectively. Field measurements have shown that atmospheric aerosols are not typically pure inorganic salt, instead, they often also contain organic species. There is ample evidence from laboratory studies that suggests that mixed particles exist in a phase-separated state, with an aqueous inorganic core and organic shell. Although phase separation has not been measured in situ, there is no reason it would not also take place in the atmosphere. Here, we investigate the deliquescence and efflorescence points, phase separation and ability to exchange gas-phase components of mixed organic and inorganic aerosol using a flow tube coupled with FTIR (Fourier transform infrared) spectroscopy. Ammonium sulfate aerosol mixed with organic polyols with different O : C ratios, including 1,4-butanediol, glycerol, 1,2,6-hexanetriol, 1,2-hexanediol, and 1,5-pentanediol have been investigated. Those constituents correspond to materials found in the atmosphere in great abundance and, therefore, particles prepared in this study should mimic atmospheric mixed-phase aerosol particles. Some results of this study tend to be in agreement with previous microscopy experiments, but others, such as phase separation properties of 1,2,6-hexanetriol, do not agree with previous work. Because the particles studied in this experiment are of a smaller size than those used in microscopy studies, the discrepancies found could be a size-related effect.
Date issued
2015-08Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesJournal
Atmospheric Chemistry and Physics
Publisher
Copernicus GmbH
Citation
Zawadowicz, M. A., S. R. Proud, S. S. Seppalainen, and D. J. Cziczo. “Hygroscopic and Phase Separation Properties of Ammonium Sulfate/organics/water Ternary Solutions.” Atmos. Chem. Phys. 15, no. 15 (2015): 8975–8986.
Version: Final published version
ISSN
1680-7324
1680-7316