MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Forrelation: A Problem That Optimally Separates Quantum from Classical Computing

Author(s)
Aaronson, Scott; Ambainis, Andris
Thumbnail
DownloadAaronson_Forrelation.pdf (193.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We achieve essentially the largest possible separation between quantum and classical query complexities. We do so using a property-testing problem called Forrelation, where one needs to decide whether one Boolean function is highly correlated with the Fourier transform of a second function. This problem can be solved using 1 quantum query, yet we show that any randomized algorithm needs Ω(√(N)log(N)) queries (improving an Ω(N[superscript 1/4]) lower bound of Aaronson). Conversely, we show that this 1 versus Ω(√(N)) separation is optimal: indeed, any t-query quantum algorithm whatsoever can be simulated by an O(N[superscript 1-1/2t])-query randomized algorithm. Thus, resolving an open question of Buhrman et al. from 2002, there is no partial Boolean function whose quantum query complexity is constant and whose randomized query complexity is linear. We conjecture that a natural generalization of Forrelation achieves the optimal t versus Ω(N[superscript 1-1/2t]) separation for all t. As a bonus, we show that this generalization is BQP-complete. This yields what's arguably the simplest BQP-complete problem yet known, and gives a second sense in which Forrelation "captures the maximum power of quantum computation."
Date issued
2015-06
URI
http://hdl.handle.net/1721.1/99662
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC '15)
Publisher
Association for Computing Machinery (ACM)
Citation
Scott Aaronson and Andris Ambainis. 2015. Forrelation: A Problem that Optimally Separates Quantum from Classical Computing. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC '15). ACM, New York, NY, USA, 307-316.
Version: Author's final manuscript
ISBN
9781450335362

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.