Show simple item record

dc.contributor.authorBilgic, Berkin
dc.contributor.authorFan, Audrey P.
dc.contributor.authorPolimeni, Jonathan R.
dc.contributor.authorCauley, Stephen F.
dc.contributor.authorBianciardi, Marta
dc.contributor.authorAdalsteinsson, Elfar
dc.contributor.authorSetsompop, Kawin
dc.contributor.authorWald, Lawrence
dc.date.accessioned2015-11-03T18:22:03Z
dc.date.available2015-11-03T18:22:03Z
dc.date.issued2013-11
dc.date.submitted2013-10
dc.identifier.issn07403194
dc.identifier.issn1522-2594
dc.identifier.urihttp://hdl.handle.net/1721.1/99688
dc.description.abstractPurpose To enable fast reconstruction of quantitative susceptibility maps with total variation penalty and automatic regularization parameter selection. Methods ℓ[subscript 1]-Regularized susceptibility mapping is accelerated by variable splitting, which allows closed-form evaluation of each iteration of the algorithm by soft thresholding and fast Fourier transforms. This fast algorithm also renders automatic regularization parameter estimation practical. A weighting mask derived from the magnitude signal can be incorporated to allow edge-aware regularization. Results Compared with the nonlinear conjugate gradient (CG) solver, the proposed method is 20 times faster. A complete pipeline including Laplacian phase unwrapping, background phase removal with SHARP filtering, and ℓ[subscript 1]-regularized dipole inversion at 0.6 mm isotropic resolution is completed in 1.2 min using MATLAB on a standard workstation compared with 22 min using the CG solver. This fast reconstruction allows estimation of regularization parameters with the L-curve method in 13 min, which would have taken 4 h with the CG algorithm. The proposed method also permits magnitude-weighted regularization, which prevents smoothing across edges identified on the magnitude signal. This more complicated optimization problem is solved 5 times faster than the nonlinear CG approach. Utility of the proposed method is also demonstrated in functional blood oxygen level–dependent susceptibility mapping, where processing of the massive time series dataset would otherwise be prohibitive with the CG solver. Conclusion Online reconstruction of regularized susceptibility maps may become feasible with the proposed dipole inversion.en_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/mrm.25029en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleFast quantitative susceptibility mapping with L1-regularization and automatic parameter selectionen_US
dc.typeArticleen_US
dc.identifier.citationBilgic, Berkin, Audrey P. Fan, Jonathan R. Polimeni, Stephen F. Cauley, Marta Bianciardi, Elfar Adalsteinsson, Lawrence L. Wald, and Kawin Setsompop. “Fast Quantitative Susceptibility Mapping with L1-Regularization and Automatic Parameter Selection.” Magn. Reson. Med. 72, no. 5 (November 20, 2013): 1444–1459.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorFan, Audrey P.en_US
dc.contributor.mitauthorAdalsteinsson, Elfaren_US
dc.contributor.mitauthorWald, Lawrenceen_US
dc.relation.journalMagnetic Resonance in Medicineen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBilgic, Berkin; Fan, Audrey P.; Polimeni, Jonathan R.; Cauley, Stephen F.; Bianciardi, Marta; Adalsteinsson, Elfar; Wald, Lawrence L.; Setsompop, Kawinen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7637-2914
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record