Show simple item record

dc.contributor.authorBilgic, Berkin
dc.contributor.authorGagoski, Borjan
dc.contributor.authorKok, Trina
dc.contributor.authorAdalsteinsson, Elfar
dc.date.accessioned2015-11-04T16:04:43Z
dc.date.available2015-11-04T16:04:43Z
dc.date.issued2012-07
dc.date.submitted2012-06
dc.identifier.issn07403194
dc.identifier.issn1522-2594
dc.identifier.urihttp://hdl.handle.net/1721.1/99707
dc.description.abstractMapping [superscript 1]H brain metabolites using chemical shift imaging is hampered by the presence of subcutaneous lipid signals, which contaminate the metabolites by ringing due to limited spatial resolution. Even though chemical shift imaging at spatial resolution high enough to mitigate the lipid artifacts is infeasible due to signal-to-noise constraints on the metabolites, the lipid signals have orders of magnitude of higher concentration, which enables the collection of high-resolution lipid maps with adequate signal-to-noise. The previously proposed dual-density approach exploits this high signal-to-noise property of the lipid layer to suppress truncation artifacts using high-resolution lipid maps. Another recent approach for lipid suppression makes use of the fact that metabolite and lipid spectra are approximately orthogonal, and seeks sparse metabolite spectra when projected onto lipid-basis functions. This work combines and extends the dual-density approach and the lipid-basis penalty, while estimating the high-resolution lipid image from 2-average k-space data to incur minimal increase on the scan time. Further, we exploit the spectral-spatial sparsity of the lipid ring and propose to estimate it from substantially undersampled (acceleration R = 10 in the peripheral k-space) 2-average in vivo data using compressed sensing and still obtain improved lipid suppression relative to using dual-density or lipid-basis penalty alone.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant NIH R01 EB007942)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 0643836)en_US
dc.description.sponsorshipSiemens-MIT Allianceen_US
dc.description.sponsorshipMIT-Center for Integration of Medicine and Innovative Technology (Medical Engineering Fellowship)en_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/mrm.24399en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleLipid suppression in CSI with spatial priors and highly undersampled peripheral k-spaceen_US
dc.typeArticleen_US
dc.identifier.citationBilgic, Berkin, Borjan Gagoski, Trina Kok, and Elfar Adalsteinsson. “Lipid Suppression in CSI with Spatial Priors and Highly Undersampled Peripheral k-Space.” Magnetic Resonance in Medicine 69, no. 6 (July 17, 2012): 1501–1511.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorBilgic, Berkinen_US
dc.contributor.mitauthorKok, Trinaen_US
dc.contributor.mitauthorAdalsteinsson, Elfaren_US
dc.relation.journalMagnetic Resonance in Medicineen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBilgic, Berkin; Gagoski, Borjan; Kok, Trina; Adalsteinsson, Elfaren_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7637-2914
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record