Show simple item record

dc.contributor.authorLei, Tao
dc.contributor.authorZhang, Yuan
dc.contributor.authorBarzilay, Regina
dc.contributor.authorJaakkola, Tommi S.
dc.date.accessioned2015-11-09T13:31:42Z
dc.date.available2015-11-09T13:31:42Z
dc.date.issued2014-06
dc.identifier.urihttp://hdl.handle.net/1721.1/99745
dc.description.abstractAccurate scoring of syntactic structures such as head-modifier arcs in dependency parsing typically requires rich, high-dimensional feature representations. A small subset of such features is often selected manually. This is problematic when features lack clear linguistic meaning as in embeddings or when the information is blended across features. In this paper, we use tensors to map high-dimensional feature vectors into low dimensional representations. We explicitly maintain the parameters as a low-rank tensor to obtain low dimensional representations of words in their syntactic roles, and to leverage modularity in the tensor for easy training with online algorithms. Our parser consistently outperforms the Turbo and MST parsers across 14 different languages. We also obtain the best published UAS results on 5 languages.en_US
dc.description.sponsorshipUnited States. Multidisciplinary University Research Initiative (W911NF-10-1-0533)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Broad Operational Language Translationen_US
dc.language.isoen_US
dc.publisherAssociation for Computational Linguisticsen_US
dc.relation.isversionofhttp://acl2014.org/acl2014/P14-1/index.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleLow-Rank Tensors for Scoring Dependency Structuresen_US
dc.typeArticleen_US
dc.identifier.citationLei, Tao, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. "Low-Rank Tensors for Scoring Dependency Structures." 52nd Annual Meeting of the Association for Computational Linguistics (June 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorLei, Taoen_US
dc.contributor.mitauthorZhang, Yuanen_US
dc.contributor.mitauthorBarzilay, Reginaen_US
dc.contributor.mitauthorJaakkola, Tommi S.en_US
dc.relation.journalProceedings of the 52nd Annual Meeting of the Association for Computational Linguisticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsLei, Tao; Zhang, Yuan; Barzilay, Regina; Jaakkola, Tommien_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3121-0185
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
dc.identifier.orcidhttps://orcid.org/0000-0002-2199-0379
dc.identifier.orcidhttps://orcid.org/0000-0003-4644-3088
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record