Show simple item record

dc.contributor.authorZhang, Yuan
dc.contributor.authorLei, Tao
dc.contributor.authorBarzilay, Regina
dc.contributor.authorJaakkola, Tommi S.
dc.contributor.authorGloberson, Amir
dc.date.accessioned2015-11-09T13:45:13Z
dc.date.available2015-11-09T13:45:13Z
dc.date.issued2014-06
dc.identifier.urihttp://hdl.handle.net/1721.1/99746
dc.description.abstractMuch of the recent work on dependency parsing has been focused on solving inherent combinatorial problems associated with rich scoring functions. In contrast, we demonstrate that highly expressive scoring functions can be used with substantially simpler inference procedures. Specifically, we introduce a sampling-based parser that can easily handle arbitrary global features. Inspired by SampleRank, we learn to take guided stochastic steps towards a high scoring parse. We introduce two samplers for traversing the space of trees, Gibbs and Metropolis-Hastings with Random Walk. The model outperforms state-of-the-art results when evaluated on 14 languages of non-projective CoNLL datasets. Our sampling-based approach naturally extends to joint prediction scenarios, such as joint parsing and POS correction. The resulting method outperforms the best reported results on the CATiB dataset, approaching performance of parsing with gold tags.en_US
dc.description.sponsorshipUnited States. Multidisciplinary University Research Initiative (W911NF-10-1-0533)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Broad Operational Language Translationen_US
dc.description.sponsorshipUnited States-Israel Binational Science Foundation (Grant 2012330)en_US
dc.language.isoen_US
dc.publisherAssociation for Computational Linguisticsen_US
dc.relation.isversionofhttp://acl2014.org/acl2014/P14-1/index.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleSteps to Excellence: Simple Inference with Refined Scoring of Dependency Treesen_US
dc.typeArticleen_US
dc.identifier.citationZhang, Yuan, Tao Lei, Regina Barzilay, Tommi Jaakkola, and Amir Globerson. "Steps to Excellence: Simple Inference with Refined Scoring of Dependency Trees." 52nd Annual Meeting of the Association for Computational Linguistics (June 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorZhang, Yuanen_US
dc.contributor.mitauthorLei, Taoen_US
dc.contributor.mitauthorBarzilay, Reginaen_US
dc.contributor.mitauthorJaakkola, Tommi S.en_US
dc.relation.journalProceedings of the 52nd Annual Meeting of the Association for Computational Linguisticsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsZhang, Yuan; Lei, Tao; Barzilay, Regina; Jaakkola, Tommi; Globerson, Amiren_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3121-0185
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
dc.identifier.orcidhttps://orcid.org/0000-0002-2199-0379
dc.identifier.orcidhttps://orcid.org/0000-0003-4644-3088
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record