Show simple item record

dc.contributor.authorZhang, Yuan
dc.contributor.authorLei, Tao
dc.contributor.authorBarzilay, Regina
dc.contributor.authorJaakkola, Tommi S.
dc.date.accessioned2015-11-09T13:55:41Z
dc.date.available2015-11-09T13:55:41Z
dc.date.issued2014-10
dc.identifier.urihttp://hdl.handle.net/1721.1/99747
dc.description.abstractDependency parsing with high-order features results in a provably hard decoding problem. A lot of work has gone into developing powerful optimization methods for solving these combinatorial problems. In contrast, we explore, analyze, and demonstrate that a substantially simpler randomized greedy inference algorithm already suffices for near optimal parsing: a) we analytically quantify the number of local optima that the greedy method has to overcome in the context of first-order parsing; b) we show that, as a decoding algorithm, the greedy method surpasses dual decomposition in second-order parsing; c) we empirically demonstrate that our approach with up to third-order and global features outperforms the state-of-the-art dual decomposition and MCMC sampling methods when evaluated on 14 languages of non-projective CoNLL datasets.en_US
dc.description.sponsorshipUnited States. Army Research Office (Grant W911NF-10-1-0533)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Broad Operational Language Translationen_US
dc.language.isoen_US
dc.relation.isversionofhttp://emnlp2014.org/papers.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleGreed Is Good If Randomized: New Inference for Dependency Parsingen_US
dc.typeArticleen_US
dc.identifier.citationZhang, Yuan, Tao Lei, Regina Barzilay, and Tommi Jaakkola. "Greed Is Good If Randomized: New Inference for Dependency Parsing." 2014 Conference on Empirical Methods on Natural Language Processing (October 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorZhang, Yuanen_US
dc.contributor.mitauthorLei, Taoen_US
dc.contributor.mitauthorBarzilay, Reginaen_US
dc.contributor.mitauthorJaakkola, Tommi S.en_US
dc.relation.journalProceedings of the 2014 Conference on Empirical Methods on Natural Language Processingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsZhang, Yuan; Lei, Tao; Barzilay, Regina; Jaakkola, Tommien_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3121-0185
dc.identifier.orcidhttps://orcid.org/0000-0002-2921-8201
dc.identifier.orcidhttps://orcid.org/0000-0002-2199-0379
dc.identifier.orcidhttps://orcid.org/0000-0003-4644-3088
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record