Show simple item record

dc.contributor.authorMurphy, Ryan P.
dc.contributor.authorGrein, Matthew E.
dc.contributor.authorGudmundsen, Theodore J.
dc.contributor.authorNajafi, Faraz
dc.contributor.authorBerggren, Karl K.
dc.contributor.authorMarsili, Francesco
dc.contributor.authorDauler, Eric A.
dc.contributor.authorMcCaughan, Adam N.
dc.date.accessioned2015-11-09T14:43:57Z
dc.date.available2015-11-09T14:43:57Z
dc.date.issued2015-04
dc.identifier.issn0277-786X
dc.identifier.urihttp://hdl.handle.net/1721.1/99751
dc.description.abstractSuperconducting circuits comprising SNSPDs placed in parallel—superconducting nanowire avalanche photodetectors, or SNAPs—have previously been demonstrated to improve the output signal-to-noise ratio (SNR) by increasing the critical current. In this work, we employ a 2-SNAP superconducting circuit with narrow (40 nm) niobium nitride (NbN) nanowires to improve the system detection efficiency to near-IR photons while maintaining high SNR. Additionally, while previous 2-SNAP demonstrations have added external choke inductance to stabilize the avalanching photocurrent, we show that the external inductance can be entirely folded into the active area by cascading 2-SNAP devices in series to produce a greatly increased active area. We fabricated series-2-SNAP (s2-SNAP) circuits with a nanowire length of 20 μm with cascades of 2-SNAPs providing the choke inductance necessary for SNAP operation. We observed that (1) the detection efficiency saturated at high bias currents, and (2) the 40 nm 2-SNAP circuit critical current was approximately twice that for a 40 nm non-SNAP configuration.en_US
dc.description.sponsorshipUnited States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (United States. Air Force Contract FA8721-05-C-0002)en_US
dc.language.isoen_US
dc.publisherSPIEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/12.2178322en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSPIEen_US
dc.titleLarge-area NbN superconducting nanowire avalanche photon detectors with saturated detection efficiencyen_US
dc.typeArticleen_US
dc.identifier.citationMurphy, Ryan P., Matthew E. Grein, Theodore J. Gudmundsen, Adam McCaughan, Faraz Najafi, Karl K. Berggren, Francesco Marsili, and Eric A. Dauler. “Large-Area NbN Superconducting Nanowire Avalanche Photon Detectors with Saturated Detection Efficiency.” Edited by Mark A. Itzler and Joe C. Campbell. Advanced Photon Counting Techniques IX (May 13, 2015). © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)en_US
dc.contributor.departmentLincoln Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorMurphy, Ryan P.en_US
dc.contributor.mitauthorGrein, Matthew E.en_US
dc.contributor.mitauthorGudmundsen, Theodore J.en_US
dc.contributor.mitauthorMcCaughan, Adam N.en_US
dc.contributor.mitauthorNajafi, Farazen_US
dc.contributor.mitauthorBerggren, Karl K.en_US
dc.contributor.mitauthorDauler, Eric A.en_US
dc.relation.journalProceedings of SPIE--the International Society for Optical Engineeringen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsMurphy, Ryan P.; Grein, Matthew E.; Gudmundsen, Theodore J.; McCaughan, Adam; Najafi, Faraz; Berggren, Karl K.; Marsili, Francesco; Dauler, Eric A.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7453-9031
dc.identifier.orcidhttps://orcid.org/0000-0002-8553-6474
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record