dc.contributor.author | Hui, Elliot E. | |
dc.contributor.author | Li, Chun | |
dc.contributor.author | Agrawal, Amit | |
dc.contributor.author | Bhatia, Sangeeta N. | |
dc.date.accessioned | 2015-11-10T13:04:17Z | |
dc.date.available | 2015-11-10T13:04:17Z | |
dc.date.issued | 2014-03 | |
dc.date.submitted | 2013-07 | |
dc.identifier.issn | 1057-7157 | |
dc.identifier.issn | 1941-0158 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/99869 | |
dc.description.abstract | The spatial organization of cellular communities plays a fundamental role in determining intercellular communication and emergent behavior. Few tools, however, exist to modulate tissue organization at the scale of individual cells, particularly in the case of dynamic manipulation. Micromechanical reconfigurable culture achieves dynamic control of tissue organization by culturing adherent cells on microfabricated plates that can be shifted to reorganize the arrangement of the cells. Although biological studies using this approach have been previously reported, this paper focuses on the engineering of the device, including the mechanism for translating manual manipulation to precise microscale position control, fault-tolerant design for manufacture, and the synthetic-to-living interface. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Faculty Early Career Development Program) | en_US |
dc.description.sponsorship | National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) | en_US |
dc.description.sponsorship | David & Lucile Packard Foundation | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/jmems.2013.2278813 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | PMC | en_US |
dc.title | Macro-to-Micro Interface for the Control of Cellular Organization | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Hui, Elliot E., Chun Li, Amit Agrawal, and Sangeeta N. Bhatia. “Macro-to-Micro Interface for the Control of Cellular Organization.” J. Microelectromech. Syst. 23, no. 2 (April 2014): 391–397. | en_US |
dc.contributor.department | Harvard University--MIT Division of Health Sciences and Technology | en_US |
dc.contributor.mitauthor | Hui, Elliot E. | en_US |
dc.contributor.mitauthor | Li, Chun | en_US |
dc.contributor.mitauthor | Agrawal, Amit | en_US |
dc.contributor.mitauthor | Bhatia, Sangeeta N. | en_US |
dc.relation.journal | Journal of Microelectromechanical Systems | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Hui, Elliot E.; Li, Chun; Agrawal, Amit; Bhatia, Sangeeta N. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-1293-2097 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |