Show simple item record

dc.contributor.authorOseledets, Ivan V.
dc.contributor.authorKarniadakis, George E.
dc.contributor.authorDaniel, Luca
dc.contributor.authorZhang, Zheng
dc.contributor.authorYang, Xiu
dc.date.accessioned2015-11-20T15:55:46Z
dc.date.available2015-11-20T15:55:46Z
dc.date.issued2014-11
dc.date.submitted2014-09
dc.identifier.issn0278-0070
dc.identifier.issn1937-4151
dc.identifier.urihttp://hdl.handle.net/1721.1/99952
dc.description.abstractHierarchical uncertainty quantification can reduce the computational cost of stochastic circuit simulation by employing spectral methods at different levels. This paper presents an efficient framework to simulate hierarchically some challenging stochastic circuits/systems that include high-dimensional subsystems. Due to the high parameter dimensionality, it is challenging to both extract surrogate models at the low level of the design hierarchy and to handle them in the high-level simulation. In this paper, we develop an efficient analysis of variance-based stochastic circuit/microelectromechanical systems simulator to efficiently extract the surrogate models at the low level. In order to avoid the curse of dimensionality, we employ tensor-train decomposition at the high level to construct the basis functions and Gauss quadrature points. As a demonstration, we verify our algorithm on a stochastic oscillator with four MEMS capacitors and 184 random parameters. This challenging example is efficiently simulated by our simulator at the cost of only 10min in MATLAB on a regular personal computer.en_US
dc.description.sponsorshipMIT-Skolkovo Institute of Science and Technology Programen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/TCAD.2014.2369505en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleEnabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decompositionen_US
dc.typeArticleen_US
dc.identifier.citationZheng Zhang, Xiu Yang, Ivan V. Oseledets, George E. Karniadakis, and Luca Daniel. “Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition.” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34, no. 1 (January 2015): 63–76.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorZhang, Zhengen_US
dc.contributor.mitauthorDaniel, Lucaen_US
dc.relation.journalIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systemsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsZheng Zhang; Xiu Yang; Oseledets, Ivan V.; Karniadakis, George E.; Daniel, Lucaen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5880-3151
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record