Show simple item record

dc.contributor.authorDeckelbaum, Alan
dc.contributor.authorTzamos, Christos
dc.contributor.authorDaskalakis, Konstantinos
dc.date.accessioned2015-11-20T16:47:07Z
dc.date.available2015-11-20T16:47:07Z
dc.date.issued2012
dc.identifier.isbn978-3-642-35310-9
dc.identifier.isbn978-3-642-35311-6
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/99956
dc.description.abstractWe show that computing the revenue-optimal deterministic auction in unit-demand single-buyer Bayesian settings, i.e. the optimal item-pricing, is computationally hard even in single-item settings where the buyer’s value distribution is a sum of independently distributed attributes, or multi-item settings where the buyer’s values for the items are independent. We also show that it is intractable to optimally price the grand bundle of multiple items for an additive bidder whose values for the items are independent. These difficulties stem from implicit definitions of a value distribution. We provide three instances of how different properties of implicit distributions can lead to intractability: the first is a #P-hardness proof, while the remaining two are reductions from the SQRT-SUM problem of Garey, Graham, and Johnson [14]. While simple pricing schemes can oftentimes approximate the best scheme in revenue, they can have drastically different underlying structure. We argue therefore that either the specification of the input distribution must be highly restricted in format, or it is necessary for the goal to be mere approximation to the optimal scheme’s revenue instead of computing properties of the scheme itself.en_US
dc.description.sponsorshipMicrosoft Research (Fellowship)en_US
dc.description.sponsorshipAlfred P. Sloan Foundation (Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Award CCF-0953960)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award CCF-1101491)en_US
dc.description.sponsorshipHertz Foundation (Daniel Stroock Fellowship)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-35311-6_22en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleOptimal Pricing Is Harden_US
dc.typeArticleen_US
dc.identifier.citationDaskalakis, Constantinos, Alan Deckelbaum, and Christos Tzamos. “Optimal Pricing Is Hard.” Internet and Network Economics (2012): 298–308.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorDaskalakis, Konstantinosen_US
dc.contributor.mitauthorDeckelbaum, Alanen_US
dc.contributor.mitauthorTzamos, Christosen_US
dc.relation.journalInternet and Network Economicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsDaskalakis, Constantinos; Deckelbaum, Alan; Tzamos, Christosen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7560-5069
dc.identifier.orcidhttps://orcid.org/0000-0002-5451-0490
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record