MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reducing Revenue to Welfare Maximization: Approximation Algorithms and Other Generalizations

Author(s)
Cai, Yang; Daskalakis, Konstantinos; Weinberg, Seth Matthew
Thumbnail
DownloadDaskalakis_Reducing revenue.pdf (321.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
It was recently shown in [12] that revenue optimization can be computationally efficiently reduced to welfare optimization in all multi-dimensional Bayesian auction problems with arbitrary (possibly combinatorial) feasibility constraints and independent additive bidders with arbitrary (possibly combinatorial) demand constraints. This reduction provides a poly-time solution to the optimal mechanism design problem in all auction settings where welfare optimization can be solved efficiently, but it is fragile to approximation and cannot provide solutions to settings where welfare maximization can only be tractably approximated. In this paper, we extend the reduction to accommodate approximation algorithms, providing an approximation preserving reduction from (truthful) revenue maximization to (not necessarily truthful) welfare maximization. The mechanisms output by our reduction choose allocations via black-box calls to welfare approximation on randomly selected inputs, thereby generalizing also our earlier structural results on optimal multi-dimensional mechanisms to approximately optimal mechanisms. Unlike [12], our results here are obtained through novel uses of the Ellipsoid algorithm and other optimization techniques over non-convex regions.
Date issued
2013
URI
http://hdl.handle.net/1721.1/99957
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '13)
Publisher
Association for Computing Machinery (ACM)
Citation
Yang Cai, Constantinos Daskalakis, and S. Matthew Weinberg. 2013. Reducing revenue to welfare maximization: approximation algorithms and other generalizations. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '13). SIAM 578-595.
Version: Author's final manuscript
ISBN
978-1-611972-51-1

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.