MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linear magnetoresistance in metals: Guiding center diffusion in a smooth random potential

Author(s)
Song, Justin C. W.; Refael, Gil; Lee, Patrick A.
Thumbnail
DownloadPhysRevB.92.180204.pdf (382.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We predict that guiding center (GC) diffusion yields a linear and nonsaturating (transverse) magnetoresistance in 3D metals. Our theory is semiclassical and applies in the regime where the transport time is much greater than the cyclotron period and for weak disorder potentials which are slowly varying on a length scale much greater than the cyclotron radius. Under these conditions, orbits with small momenta along magnetic field B are squeezed and dominate the transverse conductivity. When disorder potentials are stronger than the Debye frequency, linear magnetoresistance is predicted to survive up to room temperature and beyond. We argue that magnetoresistance from GC diffusion explains the recently observed giant linear magnetoresistance in 3D Dirac materials.
Date issued
2015-11
URI
http://hdl.handle.net/1721.1/99962
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Song, Justin C. W., Gil Refael, and Patrick A. Lee. “Linear Magnetoresistance in Metals: Guiding Center Diffusion in a Smooth Random Potential.” Physical Review B 92, no. 18 (November 2015). © 2015 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.