MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparse covers for sums of indicators

Author(s)
Papadimitriou, Christos; Daskalakis, Konstantinos
Thumbnail
DownloadDaskalakis_Sparse covers.pdf (242.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
For all n, ε > 0), we show that the set of Poisson Binomial distributions on n variables admits a proper ε-cover in total variation distance of size n[superscript 2] + n · (1/ε)[superscript O(log[superscript 2] (1/ε)), which can also be computed in polynomial time. We discuss the implications of our construction for approximation algorithms and the computation of approximate Nash equilibria in anonymous games.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/99971
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Probability Theory and Related Fields
Publisher
Springer-Verlag
Citation
Daskalakis, Constantinos, and Christos Papadimitriou. “Sparse Covers for Sums of Indicators.” Probab. Theory Relat. Fields 162, no. 3–4 (November 2, 2014): 679–705.
Version: Original manuscript
ISSN
0178-8051
1432-2064

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.