Show simple item record

dc.contributor.authorDaskalakis, Konstantinos
dc.contributor.authorWeinberg, Seth Matthew
dc.date.accessioned2015-11-20T18:51:15Z
dc.date.available2015-11-20T18:51:15Z
dc.date.issued2015
dc.date.submitted2014-10
dc.identifier.isbn978-1-61197-374-7
dc.identifier.isbn978-1-61197-373-0
dc.identifier.urihttp://hdl.handle.net/1721.1/99972
dc.description.abstractWe provide polynomial-time approximately optimal Bayesian mechanisms for makespan minimization on unrelated machines as well as for max-min fair allocations of indivisible goods, with approximation factors of 2 and min{m - k + 1, [~ over O](√k)} respectively, matching the approximation ratios of best known polynomial-time algorithms (for max-min fairness, the latter claim is true for certain ratios of the number of goods m to people k). Our mechanisms are obtained by establishing a polynomial-time approximation-sensitive reduction from the problem of designing approximately optimal mechanisms for some arbitrary objective O to that of designing bi-criterion approximation algorithms for the same objective O plus a linear allocation cost term. Our reduction is itself enabled by extending the celebrated “equivalence of separation and optimization” [27, 32] to also accommodate bi-criterion approximations. Moreover, to apply the reduction to the specific problems of makespan and max-min fairness we develop polynomial-time bi-criterion approximation algorithms for makespan minimization with costs and max-min fairness with costs, adapting the algorithms of [45], [10] and [4] to the type of bi-criterion approximation that is required by the reduction.en_US
dc.description.sponsorshipAlfred P. Sloan Foundation (Fellowship)en_US
dc.description.sponsorshipMicrosoft Research (Faculty Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Award CCF-0953960)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award CCF-1101491)en_US
dc.description.sponsorshipMicrosoft Research (Graduate Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.language.isoen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/1.9781611973730.130en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleBayesian Truthful Mechanisms for Job Scheduling from Bi-criterion Approximation Algorithmsen_US
dc.typeArticleen_US
dc.identifier.citationDaskalakis, Constantinos, and S. Matthew Weinberg. “Bayesian Truthful Mechanisms for Job Scheduling from Bi-Criterion Approximation Algorithms.” Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (December 22, 2014): 1934–1952.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorDaskalakis, Konstantinosen_US
dc.contributor.mitauthorWeinberg, Seth Matthewen_US
dc.relation.journalProceedings of the Twenty-sixth Annual ACM-SIAM Symposium on Discrete Algorithmsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsDaskalakis, Constantinos; Weinberg, S. Matthewen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5451-0490
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record