Show simple item record

dc.contributor.authorBremner, David
dc.contributor.authorChan, Timothy M.
dc.contributor.authorDemaine, Erik D.
dc.contributor.authorErickson, Jeff
dc.contributor.authorHurtado, Ferran
dc.contributor.authorIacono, John
dc.contributor.authorLangerman, Stefan
dc.contributor.authorPatrascu, Mihai
dc.contributor.authorTaslakian, Perouz
dc.date.accessioned2015-11-23T14:30:08Z
dc.date.available2015-11-23T14:30:08Z
dc.date.issued2012-12
dc.date.submitted2012-02
dc.identifier.issn0178-4617
dc.identifier.issn1432-0541
dc.identifier.urihttp://hdl.handle.net/1721.1/99983
dc.description.abstractWe give subquadratic algorithms that, given two necklaces each with n beads at arbitrary positions, compute the optimal rotation of the necklaces to best align the beads. Here alignment is measured according to the ℓ [subscript p] norm of the vector of distances between pairs of beads from opposite necklaces in the best perfect matching. We show surprisingly different results for p=1, p even, and p=∞. For p even, we reduce the problem to standard convolution, while for p=∞ and p=1, we reduce the problem to (min,+) convolution and \((\operatorname {median},+)\) convolution. Then we solve the latter two convolution problems in subquadratic time, which are interesting results in their own right. These results shed some light on the classic sorting X+Y problem, because the convolutions can be viewed as computing order statistics on the antidiagonals of the X+Y matrix. All of our algorithms run in o(n [superscript 2]) time, whereas the obvious algorithms for these problems run in Θ(n [superscript 2]) time.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CCF-0430849)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant OISE-0334653)en_US
dc.description.sponsorshipAlfred P. Sloan Foundation (Fellowship)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00453-012-9734-3en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleNecklaces, Convolutions, and X+Yen_US
dc.typeArticleen_US
dc.identifier.citationBremner, David, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. “Necklaces, Convolutions, and X+Y.” Algorithmica 69, no. 2 (December 28, 2012): 294–314.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorDemaine, Erik D.en_US
dc.relation.journalAlgorithmicaen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBremner, David; Chan, Timothy M.; Demaine, Erik D.; Erickson, Jeff; Hurtado, Ferran; Iacono, John; Langerman, Stefan; Patrascu, Mihai; Taslakian, Perouzen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record