dc.contributor.author | Bremner, David | |
dc.contributor.author | Chan, Timothy M. | |
dc.contributor.author | Demaine, Erik D. | |
dc.contributor.author | Erickson, Jeff | |
dc.contributor.author | Hurtado, Ferran | |
dc.contributor.author | Iacono, John | |
dc.contributor.author | Langerman, Stefan | |
dc.contributor.author | Patrascu, Mihai | |
dc.contributor.author | Taslakian, Perouz | |
dc.date.accessioned | 2015-11-23T14:30:08Z | |
dc.date.available | 2015-11-23T14:30:08Z | |
dc.date.issued | 2012-12 | |
dc.date.submitted | 2012-02 | |
dc.identifier.issn | 0178-4617 | |
dc.identifier.issn | 1432-0541 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/99983 | |
dc.description.abstract | We give subquadratic algorithms that, given two necklaces each with n beads at arbitrary positions, compute the optimal rotation of the necklaces to best align the beads. Here alignment is measured according to the ℓ [subscript p] norm of the vector of distances between pairs of beads from opposite necklaces in the best perfect matching. We show surprisingly different results for p=1, p even, and p=∞. For p even, we reduce the problem to standard convolution, while for p=∞ and p=1, we reduce the problem to (min,+) convolution and \((\operatorname {median},+)\) convolution. Then we solve the latter two convolution problems in subquadratic time, which are interesting results in their own right. These results shed some light on the classic sorting X+Y problem, because the convolutions can be viewed as computing order statistics on the antidiagonals of the X+Y matrix. All of our algorithms run in o(n [superscript 2]) time, whereas the obvious algorithms for these problems run in Θ(n [superscript 2]) time. | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant CCF-0430849) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant OISE-0334653) | en_US |
dc.description.sponsorship | Alfred P. Sloan Foundation (Fellowship) | en_US |
dc.language.iso | en_US | |
dc.publisher | Springer-Verlag | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s00453-012-9734-3 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Necklaces, Convolutions, and X+Y | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Bremner, David, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John Iacono, Stefan Langerman, Mihai Patrascu, and Perouz Taslakian. “Necklaces, Convolutions, and X+Y.” Algorithmica 69, no. 2 (December 28, 2012): 294–314. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Demaine, Erik D. | en_US |
dc.relation.journal | Algorithmica | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Bremner, David; Chan, Timothy M.; Demaine, Erik D.; Erickson, Jeff; Hurtado, Ferran; Iacono, John; Langerman, Stefan; Patrascu, Mihai; Taslakian, Perouz | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-3803-5703 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |