| dc.contributor.author | Demaine, Erik D. | |
| dc.contributor.author | Demaine, Martin L. | |
| dc.contributor.author | Itoh, Jin-ichi | |
| dc.contributor.author | Lubiw, Anna | |
| dc.contributor.author | Nara, Chie | |
| dc.contributor.author | O'Rourke, Joseph | |
| dc.date.accessioned | 2015-11-23T15:19:39Z | |
| dc.date.available | 2015-11-23T15:19:39Z | |
| dc.date.issued | 2013-05 | |
| dc.date.submitted | 2012-05 | |
| dc.identifier.issn | 09257721 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/99989 | |
| dc.description.abstract | We show that every convex polyhedron may be unfolded to one planar piece, and then refolded to a different convex polyhedron. If the unfolding is restricted to cut only edges of the polyhedron, we identify several polyhedra that are “edge-refold rigid” in the sense that each of their unfoldings may only fold back to the original. For example, each of the 43,380 edge unfoldings of a dodecahedron may only fold back to the dodecahedron, and we establish that 11 of the 13 Archimedean solids are also edge-refold rigid. We begin the exploration of which classes of polyhedra are and are not edge-refold rigid, demonstrating infinite rigid classes through perturbations, and identifying one infinite nonrigid class: tetrahedra. | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Elsevier | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1016/j.comgeo.2013.05.002 | en_US |
| dc.rights | Creative Commons Attribution | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en_US |
| dc.source | Other univ. web domain | en_US |
| dc.title | Refold rigidity of convex polyhedra | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Demaine, Erik D., Martin L. Demaine, Jin-ichi Itoh, Anna Lubiw, Chie Nara, and Joseph OʼRourke. “Refold Rigidity of Convex Polyhedra.” Computational Geometry 46, no. 8 (October 2013): 979–989. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
| dc.contributor.mitauthor | Demaine, Erik D. | en_US |
| dc.contributor.mitauthor | Demaine, Martin L. | en_US |
| dc.relation.journal | Computational Geometry | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dspace.orderedauthors | Demaine, Erik D.; Demaine, Martin L.; Itoh, Jin-ichi; Lubiw, Anna; Nara, Chie; OʼRourke, Joseph | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0003-3803-5703 | |
| mit.license | PUBLISHER_CC | en_US |
| mit.metadata.status | Complete | |