Show simple item record

dc.contributor.authorEnright, Ryan
dc.contributor.authorMiljkovic, Nenad
dc.contributor.authorSprittles, James
dc.contributor.authorNolan, Kevin
dc.contributor.authorMitchell, Robert
dc.contributor.authorWang, Evelyn N.
dc.date.accessioned2015-11-23T16:12:34Z
dc.date.available2015-11-23T16:12:34Z
dc.date.issued2014-09
dc.date.submitted2014-07
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.urihttp://hdl.handle.net/1721.1/99996
dc.description.abstractSurface engineering at the nanoscale is a rapidly developing field that promises to impact a range of applications including energy production, water desalination, self-cleaning and anti-icing surfaces, thermal management of electronics, microfluidic platforms, and environmental pollution control. As the area advances, more detailed insights of dynamic wetting interactions on these surfaces are needed. In particular, the coalescence of two or more droplets on ultra-low adhesion surfaces leads to droplet jumping. Here we show, through detailed measurements of jumping droplets during water condensation coupled with numerical simulations of binary droplet coalescence, that this process is fundamentally inefficient with only a small fraction of the available excess surface energy (≲6%) convertible into translational kinetic energy. These findings clarify the role of internal fluid dynamics during the jumping droplet coalescence process and underpin the development of systems that can harness jumping droplets for a wide range of applications.en_US
dc.description.sponsorshipIrish Research Councilen_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Award DE-FG02-09ER46577)en_US
dc.description.sponsorshipUnited States. Office of Naval Researchen_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/nn503643men_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMiljkovicen_US
dc.titleHow Coalescing Droplets Jumpen_US
dc.typeArticleen_US
dc.identifier.citationEnright, Ryan, Nenad Miljkovic, James Sprittles, Kevin Nolan, Robert Mitchell, and Evelyn N. Wang. “How Coalescing Droplets Jump.” ACS Nano 8, no. 10 (October 28, 2014): 10352–10362.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverWang, Evelyn N.en_US
dc.contributor.mitauthorEnright, Ryanen_US
dc.contributor.mitauthorMiljkovic, Nenaden_US
dc.contributor.mitauthorMitchell, Roberten_US
dc.contributor.mitauthorWang, Evelyn N.en_US
dc.relation.journalACS Nanoen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsEnright, Ryan; Miljkovic, Nenad; Sprittles, James; Nolan, Kevin; Mitchell, Robert; Wang, Evelyn N.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7045-1200
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record