Show simple item record

dc.contributor.authorCole, Alex
dc.contributor.authorDemaine, Erik D.
dc.contributor.authorFox-Epstein, Eli
dc.date.accessioned2015-11-23T16:30:15Z
dc.date.available2015-11-23T16:30:15Z
dc.date.issued2014
dc.identifier.isbn978-3-319-13286-0
dc.identifier.isbn978-3-319-13287-7
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/99999
dc.description.abstractWhat is the largest cube or sphere that a given rectangular piece of paper can wrap? This natural problem, which has plagued gift-wrappers everywhere, remains very much unsolved. Here we introduce new upper and lower bounds and consolidate previous results. Though these bounds rarely match, our results significantly reduce the gap.en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-13287-7_4en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleOn Wrapping Spheres and Cubes with Rectangular Paperen_US
dc.typeArticleen_US
dc.identifier.citationCole, Alex, Erik D. Demaine, and Eli Fox-Epstein. “On Wrapping Spheres and Cubes with Rectangular Paper.” Discrete and Computational Geometry and Graphs (2014): 31–43.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorCole, Alexen_US
dc.contributor.mitauthorDemaine, Erik D.en_US
dc.relation.journalDiscrete and Computational Geometry and Graphsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsCole, Alex; Demaine, Erik D.; Fox-Epstein, Elien_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record