Preface to Special Topic: Thermoelectric Materials

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1063/1.4966252</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Institute of Physics (AIP)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Dec 06 08:30:13 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/108150</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution 4.0 International License</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/4.0/</td>
</tr>
</tbody>
</table>
Preface to Special Topic: Thermoelectric Materials
Mona Zebarjadi and Gang Chen

Citation: APL Materials 4, 104401 (2016); doi: 10.1063/1.4966252
View online: http://dx.doi.org/10.1063/1.4966252
View Table of Contents: http://aip.scitation.org/toc/apm/4/10
Published by the American Institute of Physics

Articles you may be interested in
Introduction to thermoelectrics
APL Materials 4, 104806104806 (2016); 10.1063/1.4954055

Thermoelectric properties of n-type SrTiO3
APL Materials 4, 104803104803 (2016); 10.1063/1.4952610

Research Update: Oxide thermoelectrics: Beyond the conventional design rules
APL Materials 4, 104501104501 (2016); 10.1063/1.4954227

Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics
APL Materials 4, 104504104504 (2016); 10.1063/1.4962935
Preface to Special Topic: Thermoelectric Materials

Mona Zebarjadi and Gang Chen
Department of Electrical and Computer Engineering and Department of Materials Science,
University of Virginia, Charlottesville, Virginia 22904, USA and Department of Mechanical
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 12 October 2016; accepted 14 October 2016; published online 27 October 2016)

Thermoelectric power generators are solid-state devices, which can directly convert heat into
electricity. Their clean and environmentally friendly operation makes them attractive in applications
such as power generation and heat pumping. Thermoelectric devices have been invented more than
70 years ago, however their commercial applications remained limited due to their low energy
conversion efficiency. The main limiting factor in thermoelectric devices is the quality factor of the
materials used. The efficiency of the thermoelectric energy conversion is an increasing function of
the materials’ nondimensional figure of merit, $ZT = \frac{\sigma S^2 T}{\kappa}$, where σ is the electrical conductivity,
S the Seebeck coefficient, T the temperature and κ the thermal conductivity.

For a long time, the best-known thermoelectric materials were bismuth telluride-based alloys
with a peak ZT around 1. An average ZT of one, is equivalent to conversion efficiency of about
10% when the hot side is at 600 K and the cold side is at 300 K, which is significantly lower than
the Carnot limit (50% for the described ΔT). If we can increase the average ZT to two, it would
be corresponding to 16% efficiency and 20% at larger temperatures (800 K). Enhancement in ZT
while keeping the materials and device fabrication costs down can open up many applications for
thermoelectric power generators and heat pumps.

In the last decade, thermoelectric society has witnessed rapid progress. ZT of many known
good thermoelectric materials such as bismuth telluride, lead telluride, skutterudites, half-Heuslers
have been enhanced and peak ZT values of about two have been reported. Many new members
have been introduced to these families and many new compounds have been studied. At the same
time, new strategies have been introduced and proven effective in enhancing thermoelectric figure of
merit. As a society, we have improved the precision and the reliability of our characterization tech-
niques and introduced new techniques enabling extraction of crucial information such as spectral
dependence of carrier mean free path. New and exciting phenomena such as Spin-Seebeck effect
has been observed and created a lot of excitements in the field both at the fundamental level (e.g.understanding the physics of magnon-electron coupling) and the device level.

In this special topic, we have invited many of the well-known scientists of the thermoelectric
field to provide and update on their latest work. The issue highlights an introduction written by
Professor Mahan on thermoelectric materials. We have covered a wide range of exciting topics
including improvements in specific classes of materials such as oxides, synthetic minerals, bismuth
telluride, half-Heuslers, copper sulfides, lead selenite, chalcogenides, etc., some of the strategies to
improve thermoelectric figure of merit such as nanostructuring and phonon engineering and finally
physics and the latest improvements in the Spin-Seebeck field.