MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Theory of Water Desalination with Intercalation Materials

Author(s)
Singh, K.; Bouwmeester, H. J. M.; de Smet, L. C. P. M.; Biesheuvel, P. M.; Bazant, Martin Z
Thumbnail
DownloadPhysRevApplied.9.064036.pdf (1.018Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a porous electrode theory for capacitive deionization with electrodes containing nanoparticles that consist of a redox-active intercalation material. A geometry of a desalination cell is considered which consists of two porous electrodes, two flow channels, and an anion-exchange membrane, and we use the Nernst-Planck theory to describe ion transport in the aqueous phase in all these layers. A single-salt solution is considered, with unequal diffusion coefficients for anions and cations. Similar to previous models for capacitive deionization and electrodialysis, we solve the dynamic two-dimensional equations by assuming that the flow of water, and thus the advection of ions, is zero in the electrode, and in the flow channel only occurs in the direction along the electrode and membrane. In all layers, diffusion and migration are only considered in the direction perpendicular to the flow of water. Electronic as well as ionic transport limitations within the nanoparticles are neglected, and instead the Frumkin isotherm (or regular solution model) is used to describe local chemical equilibrium of cations between the nanoparticles and the adjacent electrolyte, as a function of the electrode potential. Our model describes the dynamics of key parameters of the CDI process with intercalation electrodes, such as effluent salt concentration, the distribution of intercalated ions, cell voltage, and energy consumption.
Date issued
2018-06
URI
http://hdl.handle.net/1721.1/116538
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mathematics
Journal
Physical Review Applied
Publisher
American Physical Society
Citation
Singh, K. et al. "Theory of Water Desalination with Intercalation Materials." Physical Review Applied 9, 6 (June 2018): 064036 © 2018 American Physical Society
Version: Final published version
ISSN
2331-7019

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.