The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1029/2012wr012224</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Geophysical Union (Wiley platform)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Jan 03 03:03:07 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/77980</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
The wake structure behind a porous obstruction and its implications for deposition near a finite patch of emergent vegetation

Zhengbing Chen,1,2 Alejandra Ortiz,2 Lijun Zong,2 and Heidi Nepf2

Received 4 April 2012; revised 27 July 2012; accepted 30 July 2012; published 13 September 2012.

[1] This experimental study describes the mean and turbulent flow structure in the wake of a circular array of cylinders, which is a model for a patch of emergent vegetation. The patch diameter, \(D \), and patch density, \(a \) (frontal area per volume), are varied. The flow structure is linked to a nondimensional flow blockage parameter, \(C_\varnothing aD \), which is the ratio of the patch diameter and a drag length scale \((C_\varnothing a)^{-1}\). \(C_\Delta \) is the cylinder drag coefficient. The velocity exiting the patch, \(U_e \), is reduced relative to the upstream velocity, \(U_\infty \), and \(U_e/U_\infty \) decreases as flow blockage \((C_\varnothing aD)\) increases. A predictive model is developed for \(U_e/U_\infty \). The wake behind the patch contains two peaks in turbulence intensity. The first peak occurs directly behind the patch and is related to turbulence production within the patch at the scale of individual cylinders. The second peak in turbulence intensity occurs at distance \(L_w \) downstream from the patch and is related to the wake-scale vortices of the von Karman vortex street. The presence of the flow \(U_e \) in the wake delays the formation of the von Karman vortex street until distance \(L_1 (= L_w) \) behind the patch. Both \(L_1 \) and \(L_w \) increase as \(U_e \) increases and thus as the flow blockage \((C_\varnothing aD)\) decreases. \(L_1 \) sets the distance behind the patch within which fine-particle deposition can occur. Beyond \(L_w \), turbulence associated with the wake-scale vortices inhibits deposition.

1. Introduction

[2] Flow through a porous obstruction occurs in many engineering and science contexts, including pile groups, heat exchangers, and aquatic and terrestrial vegetation. The motivation for this project is the study of aquatic vegetation. Because it reduces the near-bed velocity and stabilizes soil substrate, vegetation is regarded as a protection for shorelines and riverbanks [Micheli and Kirchner, 2002; Gedan et al., 2011]. In addition, vegetation improves water quality by removing nutrients and releasing oxygen to the water column [Wilcock et al., 1999; Schulz et al., 2003], and it provides important habitat [Kemp et al., 2000]. In recognition of its positive ecological function, efforts to restore vegetation have increased.

[3] Until recently, most research on vegetation hydrodynamics has considered meadows of uniform horizontal distribution. However, vegetation is also found in patches of finite length and width. The diversion of flow around a patch of finite width can produce locally enhanced flow that promotes erosion at the patch edge, which may inhibit the lateral expansion of the patch [Fonseca et al., 1983; Temmerman et al., 2007; Bennett et al., 2008, Bouma et al., 2009; Rominger and Nepf, 2011]. This hydrodynamic control on patch expansion represents a feedback between vegetation and geomorphology that may set limits on the potential for vegetation restoration in channels and coastal zones. Vandenbruwaene et al. [2011] note that in the initial stage of growth, vegetation often appears in circular patches. In channels, these patches subsequently grow predominantly in the downstream direction [Sand-Jensen and Madsen, 1992]. This suggests that the wake of the patch creates conditions for deposition that favor patch expansion in this direction. However, the flow adjustment near a finite patch and resulting deposition is not completely understood. Our paper provides new observations of flow adjustment and deposition near a circular patch of model emergent vegetation.

[4] Recent studies have described the wake behind a circular array of circular cylinders [Takemura and Tanaka, 2007; Nicolle and Eames, 2011; Zong and Nepf, 2012]. Because the array is porous, some flow passes through it, and the presence of this bleed flow delays the onset of the von Karman vortex street, relative to what is observed behind a solid obstruction. A steady wake exists behind the patch, within which the velocity, \(U_e \), remains constant over length scale \(L_1 \) (Figure 1). The steady wake velocity \(U_e \) is somewhat lower than the velocity exiting the patch, \(U_e \), because flow adjustment continues slightly beyond the patch. The steady wake and delayed onset of the von
Karman vortex street have been visualized by Zong and Nepf [2012] using traces of dye injected at the outer edges of the patch. This is shown schematically in Figure 1, with the dye trace shown as a thick gray line. Because the steady wake is fed only by water entering from upstream through the patch, there is no dye in this region, i.e., the steady wake appears as a clear region directly behind the patch, in between the two dye streaks. After distance L_1, the dye streaks come together and a single, patch-scale, von Karman vortex street forms. At this point the velocity at the wake centerline begins to increase. It is interesting to note that bed friction may also suppress the formation of von Karman vortices. Chen and Jirka [1995] studied shallow conditions, characterized by the stability parameter $S = c_f D/h$. Here, c_f is the bottom friction coefficient, D is the transverse body dimension, and h is the water depth. If the stability parameter is greater than a critical value, S_c, bed friction may suppress the vortex street. For a solid obstruction, $S_c = 0.2$, and for a porous plate ($\phi = 0.5$), $S_c = 0.09$. In our study, the maximum value of S is 0.019, much less than S_c for either porous or solid obstructions. Therefore, bed friction is not contributing to the suppression of vortex formation observed in our study, although it may be important in some field conditions.

The patch wake contains two peaks in turbulence intensity. The first peak occurs directly behind the patch and is related to turbulence production within the patch at the scale of individual stems. The second peak, located L_w from the back of the patch, is related to the generation of the von Karman vortex street. L_w is called the wake formation length, a name taken from previous studies on solid body wakes [Williamson, 1996]. Takemura and Tanaka [2007] also noted these two distinct scales of turbulence in the wakes of circular groupings of cylinders.

We expect that deposition near a patch of vegetation will be influenced by the spatial distribution of velocity and turbulence in the patch and wake. To this end, it would be useful to predict the exit velocity U_e, from which one could estimate the velocity and turbulence intensity within the patch. We also want to describe the distances to the onset of the von Karman vortex street (L_1) and the second turbulence peak (L_w). In this paper we develop predictive models for these parameters as a function of patch geometry and stem density. The link between these parameters and the deposition pattern around a circular patch of emergent cylinders (stems) is also explored.

2. Methods

Experiments were conducted in a 16 m long recirculating flume with a test section that is 1.2 m wide and 13 m long. The bed of the flume is horizontal. The circular patches have diameters, D, between 5 cm and 42 cm and are constructed from wooden circular cylinders with diameter $d = 0.64$ cm. The cylinders are fitted into a baseboard with a staggered array of holes. The stem density is described by n, the number of cylinders per bed area, and the frontal area per volume, $a = nd$. The solid volume fraction is $\phi = \pi d/4$. We consider 19 patch configurations, given in Table 1. In every case the cylinders are emergent, i.e., occupy the entire flow depth, $h = 13.3 \pm 0.2$ cm. The mean upstream velocity U_{x0} is 9.8 ± 0.5 cm s$^{-1}$. As noted above, none of the cases fall into the shallow flow regime of Chen and Jirka [1995].

The streamwise coordinate is x, with $x = 0$ at the leading edge of the patch (Figure 1). The lateral coordinate is y, with $y = 0$ at the centerline. The vertical coordinate is z. The three components of velocity, (u, v, w), are measured along the centerline of the patch using a Nortek Vectrino. This longitudinal transect begins 1 m upstream of the patch and extends 5 to 9 m downstream of the patch. At each position the velocity is recorded at middepth for 240 s at a sampling rate of 25 Hz. Based on previous studies in the same flume [White and Nepf, 2007], the velocity measured at middepth is a good approximation (within 5%) of the depth average. Each velocity record is decomposed into time averages ($\bar{u}, \bar{v}, \bar{w}$) and fluctuating components (u', v', w'). The turbulence intensity is described by the root-mean-square of the fluctuating components, $(u_{rms}, v_{rms}, w_{rms})$. The length scale L_1 is estimated from the longitudinal velocity transect as the distance from the downstream edge of patch ($x = D$) to the last point before the velocity begins to increase, signaling the beginning of wake-scale mixing associated with the von Karman vortex street (Figure 2).
Table 1. Summary of Parameters\(^a\)

<table>
<thead>
<tr>
<th>Case</th>
<th>Symbol</th>
<th>(D) (cm)</th>
<th>(a) (m/s)</th>
<th>(a) (D)</th>
<th>(C_D)</th>
<th>(C_{pD})</th>
<th>(\phi) (%)</th>
<th>(U_e) (cm/s)</th>
<th>(U_1) (cm/s)</th>
<th>(U_{rms1}) (cm/s)</th>
<th>(U_{rms2}) (cm/s)</th>
<th>TKE(^{1/2}) (cm^2/s)</th>
<th>(L_w) (cm)</th>
<th>(L_i) (cm)</th>
<th>Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 solid diamond</td>
<td>10</td>
<td>25</td>
<td>2.5</td>
<td>2.1</td>
<td>5.3</td>
<td>13</td>
<td>3.2</td>
<td>6.0, 2.6</td>
<td>2.3</td>
<td>1.2</td>
<td>1.6</td>
<td>1.7</td>
<td>80 (10)</td>
<td>40 (5)</td>
<td>N</td>
</tr>
<tr>
<td>2 solid square</td>
<td>10</td>
<td>30</td>
<td>3.0</td>
<td>2.3</td>
<td>6.9</td>
<td>15</td>
<td>3.0</td>
<td>3.0, 2.6</td>
<td>0.9</td>
<td>1.7</td>
<td>2.2</td>
<td>2.5</td>
<td>65 (5)</td>
<td>35 (5)</td>
<td>N</td>
</tr>
<tr>
<td>3 solid triangle</td>
<td>10</td>
<td>47</td>
<td>4.7</td>
<td>3.0</td>
<td>14</td>
<td>24</td>
<td>3.6</td>
<td>(5, 3.7)</td>
<td>0.7</td>
<td>1.5</td>
<td>2.3</td>
<td>2.7</td>
<td>60 (5)</td>
<td>30 (5)</td>
<td>N</td>
</tr>
<tr>
<td>4 solid inverted triangle</td>
<td>10</td>
<td>86</td>
<td>8.6</td>
<td>4.0</td>
<td>34</td>
<td>43</td>
<td>1.4</td>
<td>(3.8, 1.1)</td>
<td>-</td>
<td>-</td>
<td>2.7</td>
<td>3.8</td>
<td>20 (5)</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>5 solid left pointing triangle</td>
<td>12</td>
<td>5.7</td>
<td>0.7</td>
<td>1.2</td>
<td>0.8</td>
<td>2.8</td>
<td>6.7</td>
<td>(8.1, 5.2)</td>
<td>-</td>
<td>-</td>
<td>2.7</td>
<td>-</td>
<td>N</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6 solid right pointing triangle</td>
<td>12</td>
<td>7.9</td>
<td>0.9</td>
<td>1.2</td>
<td>1.1</td>
<td>4.0</td>
<td>7.0</td>
<td>(7.2, 6.1)</td>
<td>5.6</td>
<td>2.0</td>
<td>0.9</td>
<td>1.0</td>
<td>200 (50)</td>
<td>80 (5)</td>
<td>N</td>
</tr>
<tr>
<td>7 solid five-point star</td>
<td>12</td>
<td>11</td>
<td>1.3</td>
<td>1.3</td>
<td>1.7</td>
<td>5.4</td>
<td>8.3</td>
<td>(8.3, 6.0)</td>
<td>5.0</td>
<td>2.3</td>
<td>0.9</td>
<td>0.9</td>
<td>150 (20)</td>
<td>90 (10)</td>
<td>N</td>
</tr>
<tr>
<td>8 solid circle</td>
<td>12</td>
<td>22</td>
<td>2.6</td>
<td>1.7</td>
<td>4.4</td>
<td>11</td>
<td>4.7</td>
<td>(3.3, 0.9)</td>
<td>0.7</td>
<td>1.2</td>
<td>2.0</td>
<td>2.2</td>
<td>80 (5)</td>
<td>40 (5)</td>
<td>N</td>
</tr>
<tr>
<td>9 solid six-point star</td>
<td>12</td>
<td>23</td>
<td>4.6</td>
<td>1.7</td>
<td>7.8</td>
<td>12</td>
<td>2.4</td>
<td>(5.4, 2.3)</td>
<td>0.6</td>
<td>1.0</td>
<td>3.1</td>
<td>2.2</td>
<td>100 (10)</td>
<td>60 (5)</td>
<td>N</td>
</tr>
<tr>
<td>10 open diamond</td>
<td>22</td>
<td>31</td>
<td>4.7</td>
<td>2.4</td>
<td>16</td>
<td>16</td>
<td>0.4</td>
<td>(2.9, 0.0)</td>
<td>0.3</td>
<td>0.6</td>
<td>2.6</td>
<td>3.2</td>
<td>100 (5)</td>
<td>70 (5)</td>
<td>Y</td>
</tr>
<tr>
<td>11 open square</td>
<td>22</td>
<td>5.6</td>
<td>1.2</td>
<td>1.2</td>
<td>1.5</td>
<td>2.8</td>
<td>6.9</td>
<td>(7.1, 5.7)</td>
<td>5.4</td>
<td>1.2</td>
<td>1.0</td>
<td>1.0</td>
<td>380 (50)</td>
<td>130 (20)</td>
<td>N</td>
</tr>
<tr>
<td>12 open rectangle</td>
<td>22</td>
<td>5.9</td>
<td>1.3</td>
<td>1.2</td>
<td>1.6</td>
<td>3.0</td>
<td>6.6</td>
<td>(8.3, 6.5)</td>
<td>5.8</td>
<td>1.9</td>
<td>1.0</td>
<td>1.1</td>
<td>340 (40)</td>
<td>180 (10)</td>
<td>N</td>
</tr>
<tr>
<td>13 open inverted triangle</td>
<td>22</td>
<td>82</td>
<td>18</td>
<td>4.0</td>
<td>72</td>
<td>41</td>
<td>1.2</td>
<td>(1.6, 0.0)</td>
<td>-</td>
<td>-</td>
<td>3.2</td>
<td>4.9</td>
<td>30 (5)</td>
<td>-</td>
<td>Y</td>
</tr>
<tr>
<td>14 open left pointing triangle</td>
<td>22</td>
<td>11</td>
<td>2.3</td>
<td>1.3</td>
<td>3.0</td>
<td>5.3</td>
<td>5.5</td>
<td>(6.2, 5.4)</td>
<td>3.8</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>230 (20)</td>
<td>100 (10)</td>
<td>N</td>
</tr>
<tr>
<td>15 open right pointing triangle</td>
<td>22</td>
<td>22</td>
<td>4.8</td>
<td>1.7</td>
<td>8.1</td>
<td>11</td>
<td>1.9</td>
<td>(3.3, 1.9)</td>
<td>0.3</td>
<td>0.8</td>
<td>2.6</td>
<td>2.9</td>
<td>110 (10)</td>
<td>65 (5)</td>
<td>Y</td>
</tr>
<tr>
<td>16 open five-point star</td>
<td>22</td>
<td>6.8</td>
<td>2.4</td>
<td>16</td>
<td>16</td>
<td>0.4</td>
<td>(2.9, 0.0)</td>
<td>0.3</td>
<td>0.6</td>
<td>2.6</td>
<td>3.2</td>
<td>100 (5)</td>
<td>70 (5)</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>17 open circle</td>
<td>22</td>
<td>22</td>
<td>9.0</td>
<td>1.8</td>
<td>16</td>
<td>11</td>
<td>1.8</td>
<td>(1.9, 0.1)</td>
<td>0.5</td>
<td>0.6</td>
<td>3.0</td>
<td>4.0</td>
<td>160 (10)</td>
<td>100 (10)</td>
<td>Y</td>
</tr>
<tr>
<td>18 open six-point star</td>
<td>5.0</td>
<td>39</td>
<td>2.0</td>
<td>2.6</td>
<td>5.1</td>
<td>20</td>
<td>4.8</td>
<td>(7.2, 4.2)</td>
<td>0.7</td>
<td>2.8</td>
<td>1.8</td>
<td>1.9</td>
<td>35 (5)</td>
<td>14 (2)</td>
<td>N</td>
</tr>
<tr>
<td>19 cross</td>
<td>5.0</td>
<td>101</td>
<td>5.1</td>
<td>4.5</td>
<td>23</td>
<td>51</td>
<td>1.9</td>
<td>(2.8, 0.2)</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>3.5</td>
<td>17 (1)</td>
<td>-</td>
<td>Y</td>
</tr>
</tbody>
</table>

\(^a\)Numbers in the parentheses are the uncertainty. For \(U_e\), the upper and lower limit is given in parentheses. For the lowest flow blockage (\(C_{pD} = 0.8\)), no von Karman vortex street is formed, and \(U_1\), \(L_i\), and \(L_w\) are not relevant. For the three largest flow blockage (\(C_{pD} = 23, 34, 72\)), wake structure is similar to bluff body, with no steady wake, and therefore \(U_1\) and \(L_i\) are not relevant. Re indicates whether there is (Y) or is not (N) a recirculation zone behind the patch. Instrument noise (0.3 cm s\(^{-1}\)) sets the lower limit at which \(U_{rms}\) can be resolved. The depth-averaged upstream velocity (\(U_0\)) is 9.8 ± 0.5 cm s\(^{-1}\), and flow depth \(h\) is 13.3 ± 0.2 cm. The cylinder density per bed area \(n = a/D\), with \(d = 6.4 \times 10^{-3}\) m in all cases.

The uncertainty of \(L_i\) is based on the measurement spacing at that point (Table 1). The steady wake velocity (\(U_1\)) is measured in the region of constant velocity (e.g., see Figure 2). The exit velocity, \(U_e = u(x = D, y = 0)\) is the centerline velocity at the downstream edge of patch. Due to the dowel arrangement, it is not always possible to obtain a measurement exactly at this point, so that \(U_e\) is estimated by linear interpolation between the nearest measurement point upstream and downstream of \(x = D\). An upper and lower limit for \(U_e\) are then estimated by linear extrapolation through two points upstream and then two points downstream of \(x = D\). The estimate of \(U_e\) is included in Table 1, with upper and lower limits given in brackets. Finally, \(L_w\) is defined as the distance from the downstream edge of the patch to the second peak in \(u_{rms}\), denoted \(u_{rms2}\).

[10] Deposition was measured for two cases chosen to represent low and high-flow blockage conditions (defined in section 3), respectively, case 16 (\(D = 42\) cm, \(a = 6.1\) m\(^{-1}\), \(C_{pD} = 3.3\)) and case 17 (\(D = 42\) cm, \(a = 22\) m\(^{-1}\) \(C_{pD} = 16\)). These are compared to a control experiment with no patch, but the same flow conditions. The suspended material consisted of \(12\mu\) m-diameter spherical glass beads with a density of 2.5 g/cm\(^3\) and a settling velocity of 0.01 cm s\(^{-1}\) (Potters Industry, Inc., Valley Forge, Pennsylvania). To measure deposition, numbered microscope slides (2.5 × 7.5 cm) were placed every 10 cm along the centerline from 1 m before the start of the patch to 6 m after the patch. Five smaller slides (2.5 × 2.5 cm) were placed within the patch by removing a single dowel at each position. This changed the stem density by 1%; e.g., in case 17, the change from 479 to 474 total stems changed \(a\) from 22.1 to 21.9 m\(^{-1}\). The same slide configuration was used in the control experiment with no patch. The slides were weighed before and after the patch. The slides were weighed before and after the patch. The slides were weighed before and after the patch. The slides were weighed before and after the patch.

Image 321x123 to 550x294

Figure 2. Streamwise velocity along the patch centerline (\(y = 0\)) for case 14 (\(D = 22\) cm, \(a = 0.11\) cm\(^{-1}\), \(\phi = 5.3\%\)). Patch location is shown by gray bar. \(L_0\) is the upstream adjustment length. The velocity exiting the patch is \(U_e\). The steady wake velocity (\(U_1\)) is roughly constant until distance \(L_i\) behind the patch.
3.1. Predictive Model for Patch Exit Velocity (U_e)

Several researchers have studied the adjustment of flow to long, rectangular patches of vegetation. They defined two length scales that impact this adjustment. The first is the patch half width, b. The second is the canopy drag length scale, $L_c = 2(1 - \phi)/C_{Dab}$, introduced by Belcher et al. [2003]. The drag coefficient, C_{Dab}, can be affected by the stem density, the stem Reynolds number, and the morphology of the individual canopy elements [Tanino and Nepf, 2008; Nepf, 2012a]. In this study we estimate C_{Dab} from Figure 5 of Tanino and Nepf [2008], based on ϕ and the stem Reynolds number within the patch, $Re_p = U_p d/v$, with U_p the average velocity within the patch. The ratio of patch half width to drag length scale creates the nondimensional flow blockage, C_{Dab}, which describes the flow adjustment to a long, rectangular patch of finite width $2b$ [Rominger and Nepf, 2011]. We adapt this parameter to a circular patch of diameter D, by defining the flow blockage as C_{Dab}, and recognizing that $D = 2b$. Drawing on the momentum balance described in Rominger and Nepf [2011], we expect the spatial scale of flow adjustment near a circular patch to be the maximum of the drag length scale and the patch half width ($D/2$). The following adjustment length, L, captures this maximum. Unlike Rominger and Nepf [2011], we retain the porosity $(1 - \phi)$ for generality.

$$ L = \left[\frac{(2(1 - \phi))^2}{C_{Dab}} + \frac{D^2}{2} \right]^{1/2} $$

(1)

From (1) we anticipate two classes of flow behavior. For high-flow blockage, $C_{Dab}D \gg 4$, the adjustment length reduces to the patch half width, $L = D/2$. For low-flow blockage, $C_{Dab}D \ll 4$, the adjustment length reduces to the drag length scale, i.e., $L = L_c$. Note that at low-flow blockage, for which ϕ is typically $\ll 1$, we can approximate $L = 2(C_{Dab})^{-1}$ for this limit.

The observations support that L is the appropriate scale parameter for flow adjustment near a circular patch of vegetation. When the longitudinal distance (x) is normalized by L, the rapid deceleration of flow within the patch collapses to a single linear relationship for all patch sizes and patch stem densities (Figure 4). From the data, we can estimate the mean slope of the nondimensional deceleration (dashed line in Figure 4).

$$ A = d(u/U_w)/d(x/L) = 0.38 \pm 0.04 $$

(2)

Based on the observations in Figure 4, we propose the following generalization for flow adjusting to a circular patch (Figure 5): The flow begins to decelerate at a distance $L_0 \sim D$ upstream of the patch, such that the velocity at the leading edge of the patch, U_0, is already diminished from the exit velocity (U_e), the steady wake velocity (U_1), and the length scale L_1. The basic evolution of the velocity field along the patch centerline is demonstrated with case 14 (Figure 2). Flow begins to decelerate at a distance L_0 upstream of the patch leading edge, and L_0 scales on D, similar to bluff bodies. The flow decelerates rapidly within the patch. Because the velocity continues to decelerate and diverge for a short distance after the patch, the exit velocity (U_e) is slightly larger than the steady wake velocity (U_1). The velocity U_1 is roughly uniform over the distance L_1, defined as the steady wake (Figure 2). Although not observed in our study, if the steady wake velocity is sufficiently small, specifically, $U_1 h/v < 500$, this region of the wake may become laminar. At distance L_1 from the patch the velocity begins to increase with distance, reflecting the start of the von Karman vortex street that provides a lateral flux of momentum into the wake.

In a few cases solid volume fraction was sufficiently high that no steady wake region was observed (Figure 3). For example, the velocity transect for case 13 ($\phi = 0.41, D = 22$ cm) is nearly identical to a solid body with the same diameter, showing only a small shift in the position of the recirculation zone (Figure 3, top). Cases 4 ($\phi = 0.43, D = 10$ cm) and 19 ($\phi = 0.51, D = 5$ cm) are in transition toward a solid body wake. These wakes do not have a steady wake region, but the recirculation zone is elongated relative to the wake of a solid body. The steady wake region was also absent for one of the sparsest patches (case 5, $\phi = 0.028, D = 12$ cm), which did not produce patch-scale van Karman vortices, although individual von Karman vortex streets occurred behind each cylinder within the patch. This condition of cylinders within the patch, i.e., uncoupled, individual wakes, was also observed at low solid volume fraction by Takemura and Tanaka [2007] and Nicolle and Eames [2011]. The transitions at both high and low solid volume fraction are discussed further in section 4.
Symbols are given in Table 1. Equation (5) is shown as
\[\alpha = \frac{\beta}{L_e} \]
within the adjusted length scale, \(L_e \). The presence of even this small value of \(\alpha \) indicates the upstream flow adjustment distance. The scale factor, \(\alpha \), is normalized by the adjustment length scale, \(L_e \), and is defined in (2), the exit velocity, \(U_e \), and the length scale of flow adjustment defined in equation (1).

Combining (3) and (4),
\[U_e = 1 - A_{D} \]
\[U_e = U_{\infty} \frac{C_0}{2} \]

For low-flow blockage (\(C_0 < 2 \)), the exit velocity \(U_e \) is
\[\beta = 0.42 \pm 0.06 \]

For Ball et al. [1996] considered a square array (\(C_0 = 1 \)). The velocity distributions are used as a measure of the uncertainty in (5), which is comparable to the uncertainty in the mean velocity \(U_{\infty} \) on the order of 0.1 cm s\(^{-1}\), corresponding to the symbol size.

Within measurement uncertainty, equation (5) describes the measured variation in \(U_e \), with flow blockage. For low-flow blockage (\(C_0 < 2 \)), \(U_e \) drops off quickly with increasing flow blockage. In this range, \(U_e \) decreases from \(U_{\infty} \) to \(0.05, 0.11, 0.18, 0.36, 0.56, \) and 0.73 cm s\(^{-1}\). For high-flow blockage (\(C_0 > 4 \)), \(U_e \) is
\[\frac{U_e}{U_{\infty}} \approx 0.16 \]

The presence of even this small value of \(\alpha \) is sufficient to alter the von Kármán vortex street, as we discuss below.

The velocity distribution at the downstream face of the model was measured by particle-tracking velocimetry technique, from which we estimate \(\alpha \). For Ball et al. [1996], \(C_0 = 1 \), the corresponding patch diameters were \(D = 13.9 \) and 7.5 cm, and the drag coefficients were calculated from the same data using \(C_0 = 0.18 \). The velocity distributions are used as a measure of the uncertainty in (5), which is comparable to the uncertainty in the mean velocity \(U_{\infty} \) on the order of 0.1 cm s\(^{-1}\), corresponding to the symbol size.
Figure 7. Model equation (5) (solid line) with 95% confidence limits (dashed lines). The model prediction is consistent with the measurements from Ball et al. [1996] and Takemura and Tanaka [2007].

until a distance \(L_1 \) from the back of the patch. Assuming that the slope of the normalized velocity after the patch is comparable to, or scales with, the slope through the patch, we expect that \(U_1 \) can be predicted from a form similar to (5). Fitting the measured \(U_1 \) in our experiment, we arrive at

\[
\frac{U_1}{U_\infty} = 1 - (0.52 \pm 0.04) \frac{D}{L} \quad (6)
\]

For this fit, we excluded cases 4, 13, and 19, for which the wakes are approaching the solid body limit. These cases are discussed later. Equation (6) is shown as a solid black line in Figure 8a, with the 95% confidence limits shown by dashed lines. Recall that at the low-flow blockage limit, the adjustment length reduces to \(L = 2(C_{Da})^{-1} \), so that (6) may be simplified to

\[
\frac{U_1}{U_\infty} \approx 1 - \frac{1}{4} C_{Da} D \quad (7)
\]

Note that this differs from the linear relation given by Nepf [2012b] because we use values of \(C_D \) estimated from previous measurements, whereas Nepf [2012b] assumed \(C_D = 1 \). For high-flow blockage, \(U_1 \) is negligibly small \((U_1/U_\infty \approx 0.03)\), but not zero.

The flow in the steady wake \((U_1)\) separates two regions of faster velocity \((U_2)\), creating a shear layer on either side of the steady wake (Figure 1). These layers grow linearly with distance from the patch, eventually meeting at the wake centerline, depicted by thin lines in Figure 1. When the shear layers meet, their interaction results in the von Karman vortex street. Thus, \(L_1 \) may be predicted from the growth of the linear shear layers. Zong and Nepf [2012] defined the distance from the edge of the patch to the inner edge of the shear layer as \(\delta_1 \). Their observations confirmed that this length scale increases linearly with distance, as expected from previous studies of linear shear layer growth [e.g., Dimotakis, 1991]. With \(\Delta U = U_2 - U_1 \) and \(U = (U_1 + U_2)/2 \), the growth of the shear layer is described by

\[
\frac{d\delta_1}{dx} = S_1 \frac{\Delta U}{U} \quad (8)
\]

\(S_1 \) is a constant \((0.10 \pm 0.02)\) across a wide range of \(D \) and \(\phi \) values [Zong and Nepf, 2012]. The length scale \(L_1 \) extends from \(x = D \) to a point at which \(\delta_1 = D/2 \). If we assume \(\delta_1 = 0 \) at \(x = D \), \(d\delta_1/dx = (D/2)/L_1 \). Then, from (8) we can write

\[
\frac{L_1}{D} = \frac{1}{2S_1} \frac{\Delta U}{(1 + U_1/U_2)} \approx \frac{1}{4S_1} \frac{1 + U_1/U_\infty}{1 - U_1/U_\infty} \quad (9)
\]

If the channel width is much greater than the patch diameter, we may assume that \(U_2 \approx U_\infty \), resulting in the right-most term in (9). Using (6) to define \(U_1/U_\infty \), (9) can also be written

\[
\frac{L_1}{D} \approx 2.5 \frac{(4 - D/L)}{(D/L)} \quad (10)
\]

Equation (10) does a reasonable job of representing the observed variation in \(L_1 \) with \(C_{Da}D \) (solid line in Figure 8b). The dashed lines in Figure 8b represent the uncertainty in the model due to the uncertainty in \(U_1/U_\infty \) obtained from (6).

For low-flow blockage, we can use \(U_1/U_\infty \) defined in (7) instead of (6) to simplify (9). Specifically, for \(C_{Da}D < 4 \), we approximate

\[
\frac{L_1}{D} = 2.5 \frac{8 - C_{Da}D}{C_{Da}D} \quad \text{for} \quad C_{Da}D < 4 \quad (11)
\]

For \(C_{Da}D > 4 \), we assume that \(U_1 \approx 0 \), for which (9) reduces to

\[
\frac{L_1}{D} = 2.5 \quad \text{for} \quad C_{Da}D > 4 \quad (12)
\]

Figure 8. Length and velocity scales of the steady wake. (a) Measured steady wake velocity, \(U_1 \), normalized by the upstream velocity, \(U_\infty \). Uncertainty is comparable to the symbol. Solid black line is equation (6), with 95% confidence limits shown by dashed lines. (b) Measured \(L_1 \). Solid line is prediction based on equation (10), \(C_D \) estimated from Figure 5 of Tanino and Nepf [2008], based on \(\phi \) and the stem Reynolds number.
As discussed in section 1, the wake behind a porous obstruction may have two distinct regions of turbulence (Figure 1). The stem-scale turbulence generated by individual stems within the patch may be present in the patch and directly downstream. Patch-scale turbulence, i.e., the von Karman vortex street, is initiated at distance \(L_w \) from the patch and reaches its peak intensity at \(L_w \). These two sources give rise to two distinct peaks (\(u_{rms1} \) and \(u_{rms2} \) in Figure 1) in the longitudinal transect (Figure 9). While we use \(u_{rms} \) to characterize turbulence, the longitudinal distribution of TKE = \(0.5(u_{rms}^2 + v_{rms}^2 + w_{rms}^2) \) follows the same trends.

For a wake behind a solid obstruction, Williamson [1996] defined the wake formation length as the distance to the point of maximum \(u_{rms} \) associated with the von Karman vortex street. We borrow this concept to define the wake formation length \(L_w \) behind a porous patch as the distance to the second maximum of \(u_{rms} \) which, as in the solid body definition, corresponds to the von Karman vortex street. Similar to the wake of a solid obstruction, a recirculation zone is present in the wakes of high-flow blockage patches (\(C_{D}D > 7.8 \), Table 1). A recirculation zone is never observed behind a low-flow blockage patch (\(C_{D}D < 4 \)).

In these cases no recirculation was observed in the wake. Patch-scale turbulence, i.e., similar to the solid body. A similar sequence of recirculation followed by a peak \(u_{rms} \) has also been observed behind porous plates [Castro, 1971].

For low-flow blockage patches (\(C_{D}D < 4 \)) the first peak in turbulence is greater than the second (Figure 9a). As the flow blockage decreases, the second peak moves downstream and decreases in magnitude, indicating that the strength of the von Karman vortex street is declining [see also Zong and Nepf, 2012]. Between the two peaks there is a minimum in turbulence level that is lower than the turbulence level observed upstream in the undisturbed upstream flow.

For the high-flow blockage patches (\(C_{D}D > 4 \), Figure 9b), the peak directly behind the patch is smaller than the downstream peak, i.e., \(u_{rms1} < u_{rms2} \). There is one exception, case 18 (six-point stars in Figures 9b and 10c), for which \(u_{rms1} > u_{rms2} \). For this case, we estimate \(C_{D} \) = 5.1, which is close to the expected transition (\(C_{D}D = 4 \)), and we suspect this case should actually fall in the low-flow blockage regime, but is mislabeled due to uncertainty in estimating \(C_{D} \) for this very narrow patch (\(D = 5 \) cm).

For the highest values of flow blockages (\(C_{D}D = 23, 34, 72 \), shown in Figure 3), the wake of the porous patch approaches that of a solid body. As shown in Figure 3, these cases do not exhibit a steady wake zone, and a recirculation is located directly behind the patch. Consistent with this, there is a single peak in turbulence intensity (Figure 9c). For the highest flow blockage (case 13, \(C_{D}D = 72 \)) this peak occurs at a distance \(L_w/D = 1.2 \) from the patch, which matches the value observed behind a solid cylinder. For example, for \(D = 22 \) cm and \(42 \) cm, Zong and Nepf [2012] observed \(L_w/D = 1.1 \) and 1.3, respectively. Only for \(C_{D}D \leq 16 \) do we observe a steady wake (\(L_w \) in Table 1) and two distinct peaks in turbulence intensity (Figure 9). From this we infer that the transition to solid body wake behavior occurs between 16 and 23, or roughly \(C_{D}D = 20 \). A similar transition in wake behavior was observed by Nicolle and Eames [2011], who numerically simulated flow past arrays of circular cylinders with solid volume fractions from 0.002 to
velocity, U_{x} and distances are scaled by the obstruction diameter. We expect this to be valid for porous obstructions as well, such that the curves shown in Figures 9b and 10a are representative of any free stream velocity, as long as $U_{x}D/\nu > 100$, the criteria to form a von Karman vortex street [see also Zong and Nepf, 2012].

The turbulence intensity in the first peak, u_{rms1}, is also a function of flow blockage (Figure 10b), decreasing as $C_{pD}D$ increases. For high $C_{pD}D$, u_{rms1}/U_{x} approaches 0.075, which is the undisturbed upstream value (dashed line in Figure 10b). However, the turbulence is significantly higher than that expected from the local velocity, e.g., $u_{rms1}/U_{x} > 0.5$, which suggests that in the near wake the turbulence generated by individual stems is more important than that generated by local bed stress.

As u_{rms2} and u_{rms1} have opposing tendencies with increasing $C_{pD}D$, the following transition occurs. For low-flow blockage ($C_{pD}D < 4$), $u_{rms1}/u_{rms2} > 1$ (Figure 10c), i.e., the turbulence is highest immediately downstream from the patch. However, for high-flow blockage, the turbulence intensity is highest at some distance removed from the patch. Takemura and Tanaka [2007] note a similar transition in wake turbulence. In their study, PKV and LKV correspond to stem-scale turbulence and patch-scale turbulence, respectively. First, patch-scale turbulence (LVK) was absent when the ratio of lateral cylinder spacing (G) to stem diameter (d) was greater than 2 [e.g., Takemura and Tanaka, 2007, Figure 13, which roughly corresponds to $C_{pD}D \leq 1.0$. Our case 5 ($C_{pD}D = 0.8$) fits into this regime, with only stem-scale turbulence observed in the wake. Second, Takemura and Tanaka [2007] also observed that when G/d drops below zero, which corresponds to $C_{pD}D \geq 3$, the patch-scale turbulence becomes the dominant turbulent structures in the wake. This transition (recorded as $u_{rms1}/u_{rms2} < 1$) occurs for $C_{pD}D \geq 4$ in our study (Figure 10c). As discussed above, case 18 (six-point star) is an exception.

The description of u_{rms1} is complicated by the fact that, unlike u_{rms2}, which exhibits similarity when scaled by U_{x}, u_{rms1} is not directly related to U_{x} but rather is related to U_{c}. This means that the trends depicted in Figures 10b and 10c cannot be generalized to other values of U_{x}. The intensity of turbulence generated by individual stem wakes is set by the stem-scale Reynolds number, $Re_{D} = U_{c}d/\nu$ (Figure 10d), with u_{rms1} increasing with increasing Re_{D}.

4.1. Wake Formation Length Scale, L_{w}

For $C_{pD}D < 20$, the length scales L_{1} and L_{w} are related, specifically $L_{w}/L_{1} = [1.9 \pm 0.4]$, with L_{w}/L_{1} decreasing slightly as $C_{pD}D$ increases. Recall that L_{1} is not defined at the solid body limit, $C_{pD}D > 20$. Since L_{1} marks the beginning of the von Karman vortex street and L_{w} marks its peak intensity, the nearly constant ratio L_{w}/L_{1} tells us that when the vortex street is delayed downstream (larger L_{1}), it also evolves more slowly. This is consistent with the observed strength of the von Karman vortices, reflected in u_{rms2}/U_{x}. Specifically, as the vortex strength decreases, L_{w}/D increases (Figure 11). Previous studies of wake bleed flow indicate that L_{w} increases as the bleed flow U_{c} increases [e.g., Wood, 1967]. Since we established above that U_{c} is a function of $C_{pD}D$, we expect that L_{w} is also a function of $C_{pD}D$. Indeed, we find this is the case in Figure 11b. Further, as $C_{pD}D$ approaches the limit of
solid body wake behavior \(C_{fD} > 20 \), we expect \(L_w/D \approx 1.2 \). The following power law is consistent with this limit,

\[
\frac{L_w}{D} = 1.2 + \left(25 \pm 10\right)C_{fD}D^{(-0.9 \pm 0.2)}
\]

Equation (13) is shown by a solid line in Figure 11b, with 95% confidence limits shown by dashed lines.

Folkard [2005] observed a wake formation length behind a submerged seagrass model that agrees with the empirical fit given in (13). In his study, a peak in Reynolds stress occurred at \(L_w = 115 \) cm behind a meadow of height \(h_c \approx 17 \) cm [Folkard, 2005, Figure 6]. Geometrically, the patch centerline shown in Figure 1 is similar to the bed for a submerged meadow, so that \(D = 2h_c \). Each stem in Folkard’s meadow had six blades of width \(d = 1 \) cm and \(n = 750 \) stem \(m^{-2} \), so that \(a = 6nd = 0.45 \) cm\(^{-1} \), and the equivalent flow blockage is \(C_{fD}D = 16 \) (assuming \(C_D = 1 \)). For this, (13) predicts \(L_w/D = 3.3 \), which is consistent with the observed value, \(L_w/2h_m = 3.4 \). Ecologically, it interesting to note that both patch configurations lead to a relatively quiescent region immediately downstream of the plant patch, which is likely to be a region in which the plants find it easier to grow (see discussion in section 5). This is an example of ecosystem engineering, organisms altering their physical habitat to the advantage of themselves or other organisms [Jones et al., 1994].

5. Deposition Pattern Reflects the Wake Structure

Patches of channel vegetation have been observed to grow predominantly in the downstream direction [Sand-Jensen and Madsen, 1992]. This expansion is linked, at least in part, to the deposition of fine material in the wake of an existing patch, which provides ideal substrate for germination and establishment of seedlings [Scott et al., 1996; Gurnell et al., 2001; Schnauder and Moggridge, 2009]. The diminished velocity within the wake should promote deposition, relative to the free stream, and thus the length scale defining the region of depressed velocity \(L_1 \) may predict the region of enhanced deposition. Further downstream, enhanced turbulence levels can inhibit deposition, so that the length scale \(L_w \) may predict a region of diminished deposition. To explore the connection between the deposition footprint and the length scales \(L_1 \) and \(L_w \), we measured the deposition pattern for a high- and low-flow blockage patch: case 17 \((C_{fD}D = 16, \text{Figure 12}) \) and case 16 \((C_{fD}D = 3.3, \text{Figure 13}) \), respectively. In each figure the deposition measured in a control experiment \((2.50 \pm 0.05 \text{ mg cm}^{-2}, \text{SD of spatial variation}) \) is shown by a horizontal gray bar.

First consider deposition upstream of the patch. For the high-flow blockage patch (Figure 12) deposition is enhanced, relative to the control, in the region of flow deceleration upstream of the patch. Gurnell et al. [2001] and Zong and Nepf [2010] also observed enhanced deposition upstream of a patch and attributed it to diminished local bed stress, i.e., as the velocity and bed shear stress decrease in the streamwise direction, net deposition increases. The deceleration is less pronounced in the low-flow blockage case, and consistent with this there is no enhancement in deposition upstream of this patch (Figure 13).

Second, in both cases (Figures 12 and 13) deposition is diminished within the patch, relative to the control. The explanation for this is clear for the sparse patch (Figure 13), for which velocity was measured within the patch. Although the mean velocity is reduced within the patch, the turbulence is elevated by up to a factor of three above the free stream. Although velocity was not measured within the dense patch (Figure 12), we can infer that the turbulence level was also elevated within this patch. The stem Reynolds number estimated from the exit velocity, \(Re_s = U_e/dv = 115 \), is a lower bound for \(Re_d \) within the patch, because the velocity within the patch is everywhere higher than \(U_e \). \(Re_d > 100 \) indicates that stem-scale turbulence was likely generated within this patch, and probably inhibited deposition. Similarly, Zong and Nepf [2010] observed a region of diminished net deposition within the leading edge of a long patch, and they attributed this to the elevated levels of turbulence measured in that region. Neumeier [2007] observed elevated turbulence within the leading edge of a marsh grass, Spartina anglica, and suggested that the elevated turbulence may reduce sedimentation at the vegetation edge. In our study, because the patch is finite in length, the entire patch experiences elevated turbulence and diminished deposition. However, Takemura and Tanaka [2007] note that when the cylinder-to-cylinder spacing becomes too small \((G/d < \text{zero in a staggered array, corresponding to } \phi > 0.44) \), cylinder-generated turbulence may be suppressed.

Our observation of diminished deposition within the circular patch stands in contrast to other previous studies that have observed enhanced deposition inside vegetated regions [e.g., Cotton et al., 2006; Gurnell et al., 2006]. Cotton et al. [2006] note that processes other than flow dynamics may control the capture of suspended particles in macrophyte beds. For example, suspension feeders living within the vegetated region ingest particulate organic matter and produce fecal pellets, which, being much larger in size...
than the original suspended material, can more easily settle within the vegetation. Suspended material may also settle onto plant surfaces [Palmer et al., 2004] or be filtered out between closely spaced leaves [Cotton et al., 2006]. Finally, we consider the deposition in the wake of the patch. For the dense patch (Figure 12), net deposition is enhanced behind the patch, but diminished further downstream. The sparse patch has a similar pattern (Figure 13), except for a thin region directly behind the patch, in which stem turbulence persists and inhibits deposition, an extension of the conditions within the patch. In this case, the deposition does not increase above the control until \(x/D=1.5\) (Figure 13). In both cases, however, the region of enhanced deposition extends to the end of the steady wake, \(L_1\), corresponding to the region in which both the mean and turbulent velocities are diminished, relative to the open channel. The elevated turbulence associated with the Karman vortices, beginning near \(x=L_{uv}\), diminishes net deposition relative to the control. The reduction in net deposition is greater for the dense patch (Figure 12), which produced stronger Karman vortices, as suggested by the higher level of turbulence at and beyond \(x=L_u\) (compare Figures 12, top, and 13, top). Similarly, Tsujimoto [1999] observed deposition of fine material behind a dense patch of model vegetation. The deposition formed a triangular region that extended a distance of about \(2.5D\) downstream from the back of the patch [Tsujimoto, 1999, Photo 3]. This length scale is consistent with the value \(L_1/D\) observed for dense patches (Figure 8).

Figure 12. (top) Velocity (solid circle) on left-hand axis, \(u_{rms}\) (triangle) on right-hand axis, and (bottom) deposition along patch centerline for the high-flow blockage case 17 \((D=42\,\text{cm}, C_D a D = 16)\). The patch exists between \(x/D=0\) (solid vertical line) and 1 (dashed vertical line). Horizontal gray bar in Figure 12 (bottom) denotes the deposition in control experiment, and its vertical width reflects the standard deviation of measurement.

Figure 13. (top) Velocity (solid circle) on left-hand axis, \(u_{rms}\) (triangle) on right-hand axis, and (bottom) deposition along patch centerline for low-blockage case 16 \((D=42\,\text{cm}, C_D a D = 3.3)\). The patch exists between \(x/D=0\) (solid vertical line) and 1 (dashed vertical line). Horizontal gray bar in Figure 13 (bottom) denotes the deposition in control experiment, and its vertical width reflects the standard deviation of measurement.

[37] Tanaka and Yagisawa [2010] investigated sedimentation near vegetation in the field, where a range of sediment sizes was present. When the vegetation density was high (spacing/diameter = \(G/d < 0.5\)), such as with willow (Salix subfragilis), deposition in the wake was of significantly finer grain material (0.1 to 1 mm) than that within and upstream of the patch (10 to 100 mm). This stem spacing corresponds to \(\phi > \approx 0.14\) (based on data given by Takemura and Tanaka [2007]). When the vegetation density was low (spacing/diameter = \(G/d > 1, \phi \approx 0.09\)), such as Robinia pseudoacacia, the deposition in the wake consisted of only slightly finer material, but falling in the same size range (10 to 100 mm) as that deposited within and upstream of the patch. These observations suggest that when a range of particle sizes are available, a denser patch produces a greater degree of particle size segregation, probably because the denser patch creates a wake with flow conditions of greater distinction from the free stream, in both mean and turbulent measures (compare Figures 12, top, and 13, top). This important detail is not evident within our deposition data because we considered a single particle size.

[38] Based on Figures 12 and 13 and the discussion above, we conjecture that the presence of the von Karman vortex street, and its associated high levels of turbulence, sets the maximum length scale of enhanced deposition behind the patch, and potentially the maximum streamwise extension of the patch. As the patch grows into the downstream region of enhanced deposition, the patch geometry becomes more
streamline. We propose that at some point the patch becomes sufficiently streamlined that it no longer produces a wake of diminished velocity. At this point, the patch no longer promotes deposition downstream of its trailing edge, and the patch will no longer lengthen in the streamwise direction. Observations of patch geometry in the field suggest that a stable geometry exists for ratios of patch length to patch width of 2.5 [Sand-Jensen and Madsen, 1992]. A similar aspect ratio has been suggested for in-stream plant islands [Schnauber and Moggridge, 2009]. Future work is underway to test this hypothesis.

6. Conclusions

[39] Using 19 combinations of patch diameter, D, and patch density, a, we have shown that the adjustment of flow to a circular patch of emergent vegetation can be described by the spatial scale factor, Ls, which is the greater of the following two patch length scales: the patch half width, D/2, and the drag length scale \(L_D = 2(1 - \phi)C_D D \). Using this scale factor, we developed a model that predicts the velocity exiting a porous patch. The model was validated with data from two other studies, with different patch configurations. The following regimes were identified. For low-flow blockage \((C_D a D < 4) \), Ls is reduced to \(-2(C_D a) -1 \), and \(U_L/U_D \approx 1 - 0.2 C_D a D \). For high-flow blockage \((C_D a D > 4) \), Ls \(\approx D/2 \), reducing \(5 \) to \(U_L/U_D \approx 0.16 \). Similar relationships were developed for the steady wake velocity, U1. The presence of even a low value of U1 is sufficient to delay the onset of the von Karman vortex street, creating a steady wake region in which both velocity and turbulence remain diminished, relative to the free stream. For the highest flow blockages \((C_D a D > 20) \), the wake structure is similar to that of a solid body.

[40] The turbulence in the wake has two peaks. The first peak is located directly behind the patch and reflects streamwise turbulence generated by individual stems within the patch. The second peak is located at a distance Lw behind the patch and reflects the patch-scale turbulence associated with the von Karman vortex street. As flow blockage increases, the first peak decreases and the second peak both increases and shifts its position closer to the patch, i.e., Lw decreases. For \(C_D a D > 20 \), the position and magnitude of the second peak approaches that produced by solid body. Within the steady wake, where both the mean velocity and turbulence levels are low, net deposition is enhanced, relative to the open channel control. The region of enhanced deposition can be predicted from the wake length scale, L1, which is a function of flow blockage. Within the far wake, i.e., beyond Lw, high levels of turbulence associated with the von Karman vortex street inhibit deposition.

[41] Acknowledgments. This material is based upon work supported by the National Science Foundation under grant EAR 0738532. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Zhengbing Chen received funding from China Scholarship Council.

References

