Teaching RoboClam to dig: The design, testing, and genetic algorithm optimization of a biomimetic robot
Author(s)
Winter, Amos; Deits, Robin Lloyd Henderson; Dorsch, Daniel S.; Hosoi, Anette E.; Slocum, Alexander H.![Thumbnail](/bitstream/handle/1721.1/78659/Hosoi_Teaching%20RoboClam.pdf.jpg?sequence=5&isAllowed=y)
DownloadHosoi_Teaching RoboClam.pdf (1.039Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Razor clams (Ensis directus) are one of nature's most adept burrowing organisms, able to dig to 70cm at nearly 1cm/s using only 0.21J/cm. We discovered that Ensis reduces burrowing drag by using motions of its shell to fluidize a thin layer of substrate around its body. We have developed RoboClam, a robot that digs using the same mechanisms as Ensis, to explore how localized fluidization burrowing can be extended to engineering applications. In this work we present burrowing performance results of RoboClam in Ensis' habitat. Using a genetic algorithm to optimize RoboClam's kinematics, the machine was able to burrow at speeds comparable to Ensis, with a power law relationship between digging energy and depth of n = 1.17, close to the n = 1 achieved by the animal. Pushing through static soil has a theoretical energy-depth power law of n = 2, which means that Ensis-inspired digging motions can provide exponential energetic savings over existing burrowing methods.
Date issued
2010-10Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mechanical EngineeringJournal
Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Publisher
Institute of Electrical and Electronics Engineers
Citation
Winter, A G, R L H Deits, D S Dorsch, A E Hosoi, and A H Slocum. "Teaching RoboClam to Dig: The Design, Testing, and Genetic Algorithm Optimization of a Biomimetic Robot". In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010, Pp. 4231–4235. © Copyright 2010 IEEE.
Version: Final published version
Other identifiers
INSPEC Accession Number: 11689136
ISBN
978-1-4244-6674-0
ISSN
2153-0858