Show simple item record

dc.contributor.authorLee, Kichang
dc.contributor.authorLv, Wener
dc.contributor.authorTer-Ovanesyan, Evgeny
dc.contributor.authorBarley, Maya E.
dc.contributor.authorVoysey, Graham E.
dc.contributor.authorGalea, Anna M.
dc.contributor.authorHirschman, Gordon B.
dc.contributor.authorLeroy, Kristen
dc.contributor.authorMarini, Robert P.
dc.contributor.authorBarrett, Conor
dc.contributor.authorArmoundas, Antonis A.
dc.contributor.authorCohen, Richard J.
dc.date.accessioned2016-05-22T20:49:38Z
dc.date.available2016-05-22T20:49:38Z
dc.date.issued2013-02
dc.date.submitted2012-12
dc.identifier.issn01478389
dc.identifier.issn1540-8159
dc.identifier.urihttp://hdl.handle.net/1721.1/102579
dc.description.abstractBackground We developed and evaluated a novel system for guiding radiofrequency catheter ablation therapy of ventricular tachycardia. This guidance system employs an inverse solution guidance algorithm (ISGA) using a single equivalent moving dipole (SEMD) localization method. The method and system were evaluated in both a saline tank phantom model and in vivo animal (swine) experiments. Methods A catheter with two platinum electrodes spaced 3 mm apart was used as the dipole source in the phantom study. A 40-Hz sinusoidal signal was applied to the electrode pair. In the animal study, four to eight electrodes were sutured onto the right ventricle. These electrodes were connected to a stimulus generator delivering 1-ms duration pacing pulses. Signals were recorded from 64 electrodes, located either on the inner surface of the saline tank or on the body surface of the pig, and then processed by the ISGA to localize the physical or bioelectrical SEMD. Results In the phantom studies, the guidance algorithm was used to advance a catheter tip to the location of the source dipole. The distance from the final position of the catheter tip to the position of the target dipole was 2.22 ± 0.78 mm in real space and 1.38 ± 0.78 mm in image space (computational space). The ISGA successfully tracked the locations of electrodes sutured on the ventricular myocardium and the movement of an endocardial catheter placed in the animal's right ventricle. Conclusion In conclusion, we successfully demonstrated the feasibility of using an SEMD inverse algorithm to guide a cardiac ablation catheter.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 4 R44H L079726-02)en_US
dc.description.sponsorshipNational Institute on Aging (Grant 1R21AG035128)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant 1RO1HL103961)en_US
dc.description.sponsorshipCenter for Integration of Medicine and Innovative Technologyen_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1111/pace.12114en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleCardiac Ablation Catheter Guidance by Means of a Single Equivalent Moving Dipole Inverse Algorithmen_US
dc.typeArticleen_US
dc.identifier.citationLee, Kichang, Wener Lv, Evgeny Ter-Ovanesyan, Maya E. Barley, Graham E. Voysey, Anna M. Galea, Gordon B. Hirschman, et al. “Cardiac Ablation Catheter Guidance by Means of a Single Equivalent Moving Dipole Inverse Algorithm.” Pacing and Clinical Electrophysiology 36, no. 7 (July 2013): 811–22.en_US
dc.contributor.departmentInstitute for Medical Engineering and Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Division of Comparative Medicineen_US
dc.contributor.mitauthorLee, Kichangen_US
dc.contributor.mitauthorLv, Weneren_US
dc.contributor.mitauthorTer-Ovanesyan, Evgenyen_US
dc.contributor.mitauthorBarley, Maya E.en_US
dc.contributor.mitauthorMarini, Robert P.en_US
dc.contributor.mitauthorCohen, Richard J.en_US
dc.relation.journalPacing and Clinical Electrophysiologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLEE, KICHANG; LV, WENER; TER-OVANESYAN, EVGENY; BARLEY, MAYA E.; VOYSEY, GRAHAM E.; GALEA, ANNA M.; HIRSCHMAN, GORDON B.; LEROY, KRISTEN; MARINI, ROBERT P.; BARRETT, CONOR; ARMOUNDAS, ANTONIS A.; COHEN, RICHARD J.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-4058-3832
dc.identifier.orcidhttps://orcid.org/0000-0002-5573-0137
dc.identifier.orcidhttps://orcid.org/0000-0003-3147-7912
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record