MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extremal functions for Morrey’s inequality in convex domains

Author(s)
Lindgren, Erik; Hynd, Ryan C
Thumbnail
Download208_2018_Article_1775.pdf (772.0Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
For a bounded domain Ω ⊂ R[superscript n] and p>n , Morrey’s inequality implies that there is c>0 such that c∥u∥p[subscript ∞]≤∫[subscript Ω]|Du|p[subscript dx] for each u belonging to the Sobolev space W[superscript 1,p][subscript 0](Ω) . We show that the ratio of any two extremal functions is constant provided that Ω is convex. We also show with concrete examples why this property fails to hold in general and verify that convexity is not a necessary condition for a domain to have this feature. As a by product, we obtain the uniqueness of an optimization problem involving the Green’s function for the p-Laplacian.
Date issued
2018-11
URI
http://hdl.handle.net/1721.1/119141
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Mathematische Annalen
Publisher
Springer Berlin Heidelberg
Citation
Hynd, Ryan, and Erik Lindgren. “Extremal Functions for Morrey’s Inequality in Convex Domains.” Mathematische Annalen, Nov. 2018. © 2018 The Authors
Version: Final published version
ISSN
0025-5831
1432-1807

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.