Show simple item record

dc.contributor.authorLindgren, Erik
dc.contributor.authorHynd, Ryan C
dc.date.accessioned2018-11-16T15:10:11Z
dc.date.available2018-11-16T15:10:11Z
dc.date.issued2018-11
dc.identifier.issn0025-5831
dc.identifier.issn1432-1807
dc.identifier.urihttp://hdl.handle.net/1721.1/119141
dc.description.abstractFor a bounded domain Ω ⊂ R[superscript n] and p>n , Morrey’s inequality implies that there is c>0 such that c∥u∥p[subscript ∞]≤∫[subscript Ω]|Du|p[subscript dx] for each u belonging to the Sobolev space W[superscript 1,p][subscript 0](Ω) . We show that the ratio of any two extremal functions is constant provided that Ω is convex. We also show with concrete examples why this property fails to hold in general and verify that convexity is not a necessary condition for a domain to have this feature. As a by product, we obtain the uniqueness of an optimization problem involving the Green’s function for the p-Laplacian.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00208-018-1775-8en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleExtremal functions for Morrey’s inequality in convex domainsen_US
dc.typeArticleen_US
dc.identifier.citationHynd, Ryan, and Erik Lindgren. “Extremal Functions for Morrey’s Inequality in Convex Domains.” Mathematische Annalen, Nov. 2018. © 2018 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorHynd, Ryan C
dc.relation.journalMathematische Annalenen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2018-11-14T06:43:04Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.orderedauthorsHynd, Ryan; Lindgren, Eriken_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record