MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation

Author(s)
Turaga, Srinivas C.; Murray, Joseph F.; Jain, Viren; Roth, Fabian; Helmstaedter, Moritz N.; Briggman, Kevin L.; Denk, Winfried; Seung, H. Sebastian; ... Show more Show less
Thumbnail
DownloadSeung_Convolutional Networks.pdf (1.515Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Many image segmentation algorithms first generate an affinity graph and then partition it. We present a machine learning approach to computing an affinity graph using a convolutional network (CN) trained using ground truth provided by human experts. The CN affinity graph can be paired with any standard partitioning algorithm and improves segmentation accuracy significantly compared to standard hand-designed affinity functions. We apply our algorithm to the challenging 3D segmentation problem of reconstructing neuronal processes from volumetric electron microscopy (EM) and show that we are able to learn a good affinity graph directly from the raw EM images. Further, we show that our affinity graph improves the segmentation accuracy of both simple and sophisticated graph partitioning algorithms. In contrast to previous work, we do not rely on prior knowledge in the form of hand-designed image features or image preprocessing. Thus, we expect our algorithm to generalize effectively to arbitrary image types.
Date issued
2010-01
URI
http://hdl.handle.net/1721.1/60924
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
Neural Computation
Publisher
MIT Press
Citation
Turaga, Srinivas C. et al. “Convolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation.” Neural Computation 22.2 (2011): 511-538. © 2009 Massachusetts Institute of Technology
Version: Final published version
ISSN
0899-7667
1530-888X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.