Show simple item record

dc.contributor.authorTuraga, Srinivas C.
dc.contributor.authorMurray, Joseph F.
dc.contributor.authorJain, Viren
dc.contributor.authorRoth, Fabian
dc.contributor.authorHelmstaedter, Moritz N.
dc.contributor.authorBriggman, Kevin L.
dc.contributor.authorDenk, Winfried
dc.contributor.authorSeung, H. Sebastian
dc.date.accessioned2011-02-11T16:36:49Z
dc.date.available2011-02-11T16:36:49Z
dc.date.issued2010-01
dc.identifier.issn0899-7667
dc.identifier.issn1530-888X
dc.identifier.urihttp://hdl.handle.net/1721.1/60924
dc.description.abstractMany image segmentation algorithms first generate an affinity graph and then partition it. We present a machine learning approach to computing an affinity graph using a convolutional network (CN) trained using ground truth provided by human experts. The CN affinity graph can be paired with any standard partitioning algorithm and improves segmentation accuracy significantly compared to standard hand-designed affinity functions. We apply our algorithm to the challenging 3D segmentation problem of reconstructing neuronal processes from volumetric electron microscopy (EM) and show that we are able to learn a good affinity graph directly from the raw EM images. Further, we show that our affinity graph improves the segmentation accuracy of both simple and sophisticated graph partitioning algorithms. In contrast to previous work, we do not rely on prior knowledge in the form of hand-designed image features or image preprocessing. Thus, we expect our algorithm to generalize effectively to arbitrary image types.en_US
dc.language.isoen_US
dc.publisherMIT Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1162/neco.2009.10-08-881en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleConvolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentationen_US
dc.typeArticleen_US
dc.identifier.citationTuraga, Srinivas C. et al. “Convolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation.” Neural Computation 22.2 (2011): 511-538. © 2009 Massachusetts Institute of Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.approverSeung, H. Sebastian
dc.contributor.mitauthorTuraga, Srinivas C.
dc.contributor.mitauthorMurray, Joseph F.
dc.contributor.mitauthorJain, Viren
dc.contributor.mitauthorRoth, Fabian
dc.contributor.mitauthorSeung, H. Sebastian
dc.relation.journalNeural Computationen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsTuraga, Srinivas C.; Murray, Joseph F.; Jain, Viren; Roth, Fabian; Helmstaedter, Moritz; Briggman, Kevin; Denk, Winfried; Seung, H. Sebastianen
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record