Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition
Author(s)
Cadieu, Charles; Hong, Ha; Yamins, Daniel L. K.; Pinto, Nicolas; Ardila, Diego; Solomon, Ethan A.; Majaj, Najib J.; DiCarlo, James; ... Show more Show less
DownloadCadieu-2014-Deep Neural Networks.pdf (1.209Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
The primate visual system achieves remarkable visual object recognition performance even in brief presentations, and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition). This remarkable performance is mediated by the representation formed in inferior temporal (IT) cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs). It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations, such as the amount of noise, the number of neural recording sites, and the number of trials, and computational limitations, such as the complexity of the decoding classifier and the number of classifier training examples. In this work, we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of “kernel analysis” that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT, and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds.
Date issued
2014-12Department
Massachusetts Institute of Technology. Institute for Medical Engineering & Science; Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; McGovern Institute for Brain Research at MITJournal
PLoS Computational Biology
Publisher
Public Library of Science
Citation
Cadieu, Charles F., Ha Hong, Daniel L. K. Yamins, Nicolas Pinto, Diego Ardila, Ethan A. Solomon, Najib J. Majaj, and James J. DiCarlo. “Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition.” Edited by Matthias Bethge. PLoS Comput Biol 10, no. 12 (December 18, 2014): e1003963.
Version: Final published version
ISSN
1553-7358