Show simple item record

dc.contributor.authorCadieu, Charles
dc.contributor.authorHong, Ha
dc.contributor.authorYamins, Daniel L. K.
dc.contributor.authorPinto, Nicolas
dc.contributor.authorArdila, Diego
dc.contributor.authorSolomon, Ethan A.
dc.contributor.authorMajaj, Najib J.
dc.contributor.authorDiCarlo, James
dc.date.accessioned2014-12-24T16:48:44Z
dc.date.available2014-12-24T16:48:44Z
dc.date.issued2014-12
dc.identifier.issn1553-7358
dc.identifier.urihttp://hdl.handle.net/1721.1/92502
dc.description.abstractThe primate visual system achieves remarkable visual object recognition performance even in brief presentations, and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition). This remarkable performance is mediated by the representation formed in inferior temporal (IT) cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs). It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations, such as the amount of noise, the number of neural recording sites, and the number of trials, and computational limitations, such as the complexity of the decoding classifier and the number of classifier training examples. In this work, we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of “kernel analysis” that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT, and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds.en_US
dc.description.sponsorshipNational Eye Institute (NIH NEI: 5R01EY014970-09)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF:0964269)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (DARPA: HR0011-10-C-0032)en_US
dc.description.sponsorshipNational Eye Institute (NIH: F32 EY022845-01)en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pcbi.1003963en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourcePublic Library of Scienceen_US
dc.titleDeep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognitionen_US
dc.typeArticleen_US
dc.identifier.citationCadieu, Charles F., Ha Hong, Daniel L. K. Yamins, Nicolas Pinto, Diego Ardila, Ethan A. Solomon, Najib J. Majaj, and James J. DiCarlo. “Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition.” Edited by Matthias Bethge. PLoS Comput Biol 10, no. 12 (December 18, 2014): e1003963.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorHong, Haen_US
dc.contributor.mitauthorCadieu, Charlesen_US
dc.contributor.mitauthorYamins, Daniel L. K.en_US
dc.contributor.mitauthorPinto, Nicolasen_US
dc.contributor.mitauthorArdila, Diegoen_US
dc.contributor.mitauthorSolomon, Ethan A.en_US
dc.contributor.mitauthorMajaj, Najib J.en_US
dc.contributor.mitauthorDiCarlo, Jamesen_US
dc.relation.journalPLoS Computational Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCadieu, Charles F.; Hong, Ha; Yamins, Daniel L. K.; Pinto, Nicolas; Ardila, Diego; Solomon, Ethan A.; Majaj, Najib J.; DiCarlo, James J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9910-5627
dc.identifier.orcidhttps://orcid.org/0000-0002-1592-5896
dc.identifier.orcidhttps://orcid.org/0000-0001-7779-2219
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record