MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling

Author(s)
Soerensen, A. L.; Angot, H.; Artz, R.; Brooks, S.; Brunke, E.-G.; Conley, G.; Dommergue, A.; Ebinghaus, R.; Holsen, T. M.; Jaffe, D. A.; Kang, S.; Kelley, P.; Luke, W. T.; Magand, O.; Marumoto, K.; Pfaffhuber, K. A.; Ren, X.; Sheu, G.-R.; Slemr, F.; Warneke, T.; Weigelt, A.; Weiss-Penzias, P.; Wip, D. C.; Zhang, Q.; Song, Shaojie; Selin, Noelle E; ... Show more Show less
Thumbnail
DownloadSong-2015-Top-down constraints.pdf (2.573Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg[superscript 0] observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations and also matches regional over-water Hg[superscript 0] and wet deposition measurements. The optimized global mercury emission to the atmosphere is ~ 5.8 Gg yr[superscript −1]. The ocean accounts for 3.2 Gg yr[superscript −1] (55% of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg[superscript 0]. The optimized Asian anthropogenic emission of Hg[superscript 0] (gas elemental mercury) is 650–1770 Mg yr[superscript −1], higher than its bottom-up estimates (550–800 Mg yr[superscript −1]). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23 % of present-day atmospheric deposition.
Date issued
2015-06
URI
http://hdl.handle.net/1721.1/98104
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences; Massachusetts Institute of Technology. Engineering Systems Division
Journal
Atmospheric Chemistry and Physics
Publisher
Copernicus GmbH
Citation
Song, S., N. E. Selin, A. L. Soerensen, H. Angot, R. Artz, S. Brooks, E.-G. Brunke, et al. “Top-down Constraints on Atmospheric Mercury Emissions and Implications for Global Biogeochemical Cycling.” Atmos. Chem. Phys. 15, no. 12 (2015): 7103–7125.
Version: Final published version
ISSN
1680-7324
1680-7316

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.