Show simple item record

dc.contributor.authorSoerensen, A. L.
dc.contributor.authorAngot, H.
dc.contributor.authorArtz, R.
dc.contributor.authorBrooks, S.
dc.contributor.authorBrunke, E.-G.
dc.contributor.authorConley, G.
dc.contributor.authorDommergue, A.
dc.contributor.authorEbinghaus, R.
dc.contributor.authorHolsen, T. M.
dc.contributor.authorJaffe, D. A.
dc.contributor.authorKang, S.
dc.contributor.authorKelley, P.
dc.contributor.authorLuke, W. T.
dc.contributor.authorMagand, O.
dc.contributor.authorMarumoto, K.
dc.contributor.authorPfaffhuber, K. A.
dc.contributor.authorRen, X.
dc.contributor.authorSheu, G.-R.
dc.contributor.authorSlemr, F.
dc.contributor.authorWarneke, T.
dc.contributor.authorWeigelt, A.
dc.contributor.authorWeiss-Penzias, P.
dc.contributor.authorWip, D. C.
dc.contributor.authorZhang, Q.
dc.contributor.authorSong, Shaojie
dc.contributor.authorSelin, Noelle E
dc.date.accessioned2015-08-19T17:34:01Z
dc.date.available2015-08-19T17:34:01Z
dc.date.issued2015-06
dc.date.submitted2015-05
dc.identifier.issn1680-7324
dc.identifier.issn1680-7316
dc.identifier.urihttp://hdl.handle.net/1721.1/98104
dc.description.abstractWe perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg[superscript 0] observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations and also matches regional over-water Hg[superscript 0] and wet deposition measurements. The optimized global mercury emission to the atmosphere is ~ 5.8 Gg yr[superscript −1]. The ocean accounts for 3.2 Gg yr[superscript −1] (55% of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg[superscript 0]. The optimized Asian anthropogenic emission of Hg[superscript 0] (gas elemental mercury) is 650–1770 Mg yr[superscript −1], higher than its bottom-up estimates (550–800 Mg yr[superscript −1]). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23 % of present-day atmospheric deposition.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Atmospheric Chemistry Program (1053648)en_US
dc.language.isoen_US
dc.publisherCopernicus GmbHen_US
dc.relation.isversionofhttp://dx.doi.org/10.5194/acp-15-7103-2015en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceCopernicus Publicationsen_US
dc.titleTop-down constraints on atmospheric mercury emissions and implications for global biogeochemical cyclingen_US
dc.typeArticleen_US
dc.identifier.citationSong, S., N. E. Selin, A. L. Soerensen, H. Angot, R. Artz, S. Brooks, E.-G. Brunke, et al. “Top-down Constraints on Atmospheric Mercury Emissions and Implications for Global Biogeochemical Cycling.” Atmos. Chem. Phys. 15, no. 12 (2015): 7103–7125.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Divisionen_US
dc.contributor.mitauthorSong, Shaojieen_US
dc.contributor.mitauthorSelin, Noelle Eckleyen_US
dc.relation.journalAtmospheric Chemistry and Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSong, S.; Selin, N. E.; Soerensen, A. L.; Angot, H.; Artz, R.; Brooks, S.; Brunke, E.-G.; Conley, G.; Dommergue, A.; Ebinghaus, R.; Holsen, T. M.; Jaffe, D. A.; Kang, S.; Kelley, P.; Luke, W. T.; Magand, O.; Marumoto, K.; Pfaffhuber, K. A.; Ren, X.; Sheu, G.-R.; Slemr, F.; Warneke, T.; Weigelt, A.; Weiss-Penzias, P.; Wip, D. C.; Zhang, Q.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6396-5622
dc.identifier.orcidhttps://orcid.org/0000-0001-6395-7422
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record