Show simple item record

dc.contributor.authorCranford, Steven
dc.contributor.authorYao, Haimin
dc.contributor.authorOrtiz, Christine
dc.contributor.authorBuehler, Markus J
dc.date.accessioned2015-10-13T17:07:27Z
dc.date.available2015-10-13T17:07:27Z
dc.date.issued2009-11
dc.date.submitted2009-10
dc.identifier.issn00225096
dc.identifier.urihttp://hdl.handle.net/1721.1/99220
dc.description.abstractCurrent carbon nanotube (CNT) synthesis methods include the production of ordered, free-standing vertically aligned arrays, the properties of which are partially governed by interactions between adjacent tubes. Using material parameters determined by atomistic methods, here we represent individual CNTs by a simple single degree of freedom ‘lollipop’ model to investigate the formation, mechanics, and self-organization of CNT bundles driven by weak van der Waals interactions. The computationally efficient simple single degree of freedom model enables us to study arrays consisting of hundreds of thousands of nanotubes. The effects of nanotube parameters such as aspect ratio, bending stiffness, and surface energy, on formation and bundle size, as well as the intentional manipulation of bundle pattern formation, are investigated. We report studies with both single wall carbon nanotubes (SWCNTs) and double wall carbon nanotubes (DWCNTs) with varying aspect ratios (that is, varying height). We calculate the local density distributions of the nanotube bundles and show that there exists a maximum attainable bundle density regardless of an increase in surface energy for nanotubes with given spacing and stiffness. In addition to applications to CNTs, our model can also be applied to other types of nanotube arrays (e.g. protein nanotubes, polymer nanofilaments).en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DMR-0819762)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jmps.2009.11.002en_US
dc.rightsCreative Commons Attribution-Noncommercial-NoDerivativesen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceMIT Web Domainen_US
dc.titleA single degree of freedom ‘lollipop’ model for carbon nanotube bundle formationen_US
dc.typeArticleen_US
dc.identifier.citationCranford, Steven, Haimin Yao, Christine Ortiz, and Markus J. Buehler. “A Single Degree of Freedom ‘lollipop’ Model for Carbon Nanotube Bundle Formation.” Journal of the Mechanics and Physics of Solids 58, no. 3 (March 2010): 409–427.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanicsen_US
dc.contributor.mitauthorCranford, Stevenen_US
dc.contributor.mitauthorYao, Haiminen_US
dc.contributor.mitauthorOrtiz, Christineen_US
dc.contributor.mitauthorBuehler, Markus J.en_US
dc.relation.journalJournal of the Mechanics and Physics of Solidsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCranford, Steven; Yao, Haimin; Ortiz, Christine; Buehler, Markus J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3511-5679
dc.identifier.orcidhttps://orcid.org/0000-0003-0549-2246
dc.identifier.orcidhttps://orcid.org/0000-0002-4173-9659
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record