MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A distributive lattice connected with arithmetic progressions of length three

Author(s)
Liu, Fu; Stanley, Richard P
Thumbnail
Download11139_2014_Article_9623.pdf (413.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Let T be a collection of 3-element subsets S of {1,…,n} with the property that if i<j<k and a<b<c are two 3-element subsets in S, then there exists an integer sequence x[subscript 1]<x[subscript 2]<⋯<x[subscript n] such that x[subscript i],x[subscript j],x[subscript k] and x[subscript a],x[subscript b],x[subscript c] are arithmetic progressions. We determine the number of such collections T and the number of them of maximum size. These results confirm two conjectures of Noam Elkies.
Date issued
2014-10
URI
http://hdl.handle.net/1721.1/104774
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
The Ramanujan Journal
Publisher
Springer US
Citation
Liu, Fu, and Richard P. Stanley. “A Distributive Lattice Connected with Arithmetic Progressions of Length Three.” The Ramanujan Journal 36.1–2 (2015): 203–226.
Version: Author's final manuscript
ISSN
1382-4090
1572-9303

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.