Calendar

This section provides links to lecture notes for the course, along with corresponding reading assignments and supplementary materials. Some of the reading assignments refer to chapters from a draft textbook which is not currently available on this site.

LEC # LECTURE READINGS OTHER MATERIALS
1 Introduction (PDF)
2 Linear Regression (PDF) (Jordan & Bishop: Chapters 5-5.3)
3 Additive Models, Maximum Likelihood (PDF) (Jordan & Bishop: Chapter 4 (up to eq 4.20) Chapters 5-5.3 & 5.6)
4 Active Learning (PDF)
5 Classification (PDF) (Jordan & Bishop: Chapter 4 Mixture Models; Chapter 6-6.3.1)
6 Logistic Regression, Regularization (PDF) Additional Notes on Regularization (PDF)
7 Regularization, Support Vector Machines (PDF) Optional Paper: Burges, C. "A Tutorial on Support Vector Machines for Pattern Recognition," Kluwer Academic Publishers. Tutorial on Lagrange Multipliers (PDF)
8 Support Vector Machines, Text Classification (PDF) Optional Paper: Schapire, R.E. "A Brief Introduction to Boosting," Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999.

Optional Paper: Friedman, J., Trevor, H., and Tibshirani, R. "Additive Logistic Regression: A Stastical View Of Boosting," 1999.
9 Feature Selection, Combination of Methods (PDF)
10 Boosting, Complexity (PDF)
11 Structural Risk Minimization, Description Length
(+ Midterm Discussion) (PDF)
MIDTERM EXAM
12 Mixture Models, EM (PDF) (Jordan & Bishop: Chapter 4 Statistical Concepts, Mixture Models; Chapter 9 up to 9.2)
13 EM, Regularization, Conditional Mixtures (PDF) (Jordan & Bishop: Chapter 9 up to 9.2.3)
14 Non-Parametric Density Estimation, Clustering (PDF)
15 Clustering, Markov Models (PDF)
16 Markov and Hidden Markov Models (PDF) (Jordan & Bishop: Chapter 11)

Optional Paper: Rabiner, L.R. "A Tutorial on Hidden Markov Model and Selected Applications in Speech Recognition," Proceedings of the IEEE, Vol. 77, No. 2, February 1989.
17 Hidden Markov Models (PDF)
18 Viterbi, Graphical Models (PDF)
19 Bayesian Networks (PDF)
20 Medical Diagnosis Example, Influence Diagrams(PDF)
21 Influence Diagrams, Exact Inference (PDF)
22 Belief Propagation (PDF)
23 Learning Graphical Models (Guest Lecture) (PDF)
FINAL EXAM