MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust calibration of a universal single-qubit gate set via robust phase estimation

Author(s)
Kimmel, Shelby; Low, Guang Hao; Yoder, Theodore James
Thumbnail
DownloadPhysRevA.92.062315.pdf (356.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
An important step in building a quantum computer is calibrating experimentally implemented quantum gates to produce operations that are close to ideal unitaries. The calibration step involves estimating the systematic errors in gates and then using controls to correct the implementation. Quantum process tomography is a standard technique for estimating these errors but is both time consuming (when one wants to learn only a few key parameters) and usually inaccurate without resources such as perfect state preparation and measurement, which might not be available. With the goal of efficiently and accurately estimating specific errors using minimal resources, we develop a parameter estimation technique, which can gauge key systematic parameters (specifically, amplitude and off-resonance errors) in a universal single-qubit gate set with provable robustness and efficiency. In particular, our estimates achieve the optimal efficiency, Heisenberg scaling, and do so without entanglement and entirely within a single-qubit Hilbert space. Our main theorem making this possible is a robust version of the phase estimation procedure of Higgins et al. [B. L. Higgins et al., New J. Phys. 11, 073023 (2009)NJOPFM1367-263010.1088/1367-2630/11/7/073023].
Date issued
2015-12
URI
http://hdl.handle.net/1721.1/100338
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review A
Publisher
American Physical Society
Citation
Kimmel, Shelby, Guang Hao Low, and Theodore J. Yoder. "Robust calibration of a universal single-qubit gate set via robust phase estimation." Phys. Rev. A 92, 062315 (December 2015). © 2015 American Physical Society
Version: Final published version
ISSN
1050-2947
1094-1622

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.