Show simple item record

dc.contributor.authorKimmel, Shelby
dc.contributor.authorLow, Guang Hao
dc.contributor.authorYoder, Theodore James
dc.date.accessioned2015-12-16T16:33:01Z
dc.date.available2015-12-16T16:33:01Z
dc.date.issued2015-12
dc.date.submitted2015-02
dc.identifier.issn1050-2947
dc.identifier.issn1094-1622
dc.identifier.urihttp://hdl.handle.net/1721.1/100338
dc.description.abstractAn important step in building a quantum computer is calibrating experimentally implemented quantum gates to produce operations that are close to ideal unitaries. The calibration step involves estimating the systematic errors in gates and then using controls to correct the implementation. Quantum process tomography is a standard technique for estimating these errors but is both time consuming (when one wants to learn only a few key parameters) and usually inaccurate without resources such as perfect state preparation and measurement, which might not be available. With the goal of efficiently and accurately estimating specific errors using minimal resources, we develop a parameter estimation technique, which can gauge key systematic parameters (specifically, amplitude and off-resonance errors) in a universal single-qubit gate set with provable robustness and efficiency. In particular, our estimates achieve the optimal efficiency, Heisenberg scaling, and do so without entanglement and entirely within a single-qubit Hilbert space. Our main theorem making this possible is a robust version of the phase estimation procedure of Higgins et al. [B. L. Higgins et al., New J. Phys. 11, 073023 (2009)NJOPFM1367-263010.1088/1367-2630/11/7/073023].en_US
dc.description.sponsorshipUnited States. Dept. of Defenseen_US
dc.description.sponsorshipUnited States. Army Research Office. Quantum Algorithms Programen_US
dc.description.sponsorshipAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshipen_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevA.92.062315en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleRobust calibration of a universal single-qubit gate set via robust phase estimationen_US
dc.typeArticleen_US
dc.identifier.citationKimmel, Shelby, Guang Hao Low, and Theodore J. Yoder. "Robust calibration of a universal single-qubit gate set via robust phase estimation." Phys. Rev. A 92, 062315 (December 2015). © 2015 American Physical Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Theoretical Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorKimmel, Shelbyen_US
dc.contributor.mitauthorLow, Guang Haoen_US
dc.contributor.mitauthorYoder, Theodore Jamesen_US
dc.relation.journalPhysical Review Aen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2015-12-08T23:00:03Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsKimmel, Shelby; Low, Guang Hao; Yoder, Theodore J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-6211-982X
dc.identifier.orcidhttps://orcid.org/0000-0001-9614-2836
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record