MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recombinase-based conditional and reversible gene regulation via XTR alleles

Author(s)
Robles-Oteiza, Camila; Yates, Travis; Cicchini, Michelle; Lauderback, Brian; Burds, Aurora A.; Winslow, Monte M.; Feldser, David M.; Taylor, Sarah E.; Cashman, Chris; Jacks, Tyler E; ... Show more Show less
Thumbnail
DownloadRobles-Oteiza-2015-Recombinase-based.pdf (1.777Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Synthetic biological tools that enable precise regulation of gene function within in vivo systems have enormous potential to discern gene function in diverse physiological settings. Here we report the development and characterization of a synthetic gene switch that, when targeted in the mouse germline, enables conditional inactivation, reports gene expression and allows inducible restoration of the targeted gene. Gene inactivation and reporter expression is achieved through Cre-mediated stable inversion of an integrated gene-trap reporter, whereas inducible gene restoration is afforded by Flp-dependent deletion of the inverted gene trap. We validate our approach by targeting the p53 and Rb genes and establishing cell line and in vivo cancer model systems, to study the impact of p53 or Rb inactivation and restoration. We term this allele system XTR, to denote each of the allelic states and the associated expression patterns of the targeted gene: eXpressed (XTR), Trapped (TR) and Restored (R).
Date issued
2015-11
URI
http://hdl.handle.net/1721.1/100823
Department
Koch Institute for Integrative Cancer Research at MIT
Journal
Nature Communications
Citation
Robles-Oteiza, Camila, Sarah Taylor, Travis Yates, Michelle Cicchini, Brian Lauderback, Christopher R. Cashman, Aurora A. Burds, Monte M. Winslow, Tyler Jacks, and David M. Feldser. “Recombinase-Based Conditional and Reversible Gene Regulation via XTR Alleles.” Nat Comms 6 (November 5, 2015): 8783. © 2015 Macmillan Publishers Limited
Version: Final published version
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.