Show simple item record

dc.contributor.authorWen, X.
dc.contributor.authorDatta, A.
dc.contributor.authorTraverso, L. M.
dc.contributor.authorPan, L.
dc.contributor.authorXu, X.
dc.contributor.authorMoon, Euclid Eberle
dc.date.accessioned2016-01-18T23:01:20Z
dc.date.available2016-01-18T23:01:20Z
dc.date.issued2015-11
dc.date.submitted2015-04
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/100905
dc.description.abstractOptical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (Grant N66001-08-1-2037)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CMMI-1120577)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CMMI-1405078)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep16192en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleHigh throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-fielden_US
dc.typeArticleen_US
dc.identifier.citationWen, X., A. Datta, L. M. Traverso, L. Pan, X. Xu, and E. E. Moon. “High Throughput Optical Lithography by Scanning a Massive Array of Bowtie Aperture Antennas at Near-Field.” Scientific Reports 5 (November 3, 2015): 16192.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorMoon, Euclid Eberleen_US
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWen, X.; Datta, A.; Traverso, L. M.; Pan, L.; Xu, X.; Moon, E. E.en_US
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record