Show simple item record

dc.contributor.authorWade, Mark T.
dc.contributor.authorOrcutt, Jason Scott
dc.contributor.authorShainline, Jeffrey M.
dc.contributor.authorSun, Chen
dc.contributor.authorGeorgas, Michael
dc.contributor.authorMoss, Benjamin Roy
dc.contributor.authorKumar, Rajesh
dc.contributor.authorAlloatti, Luca
dc.contributor.authorPavanello, Fabio
dc.contributor.authorChen, Yu-Hsin
dc.contributor.authorNammari, Kareem
dc.contributor.authorNotaros, Jelena
dc.contributor.authorRam, Rajeev J.
dc.contributor.authorPopovic, Milos A.
dc.contributor.authorAtabaki, Amir H.
dc.contributor.authorLeu, Jonathan Chung
dc.contributor.authorStojanovic, Vladimir
dc.date.accessioned2016-01-27T18:19:30Z
dc.date.available2016-01-27T18:19:30Z
dc.date.issued2015-04
dc.identifier.issn0277-786X
dc.identifier.urihttp://hdl.handle.net/1721.1/101010
dc.description.abstractWe review recent progress of an effort led by the Stojanović (UC Berkeley), Ram (MIT) and Popović (CU Boulder) research groups to enable the design of photonic devices, and complete on-chip electro-optic systems and interfaces, directly in standard microelectronics CMOS processes in a microprocessor foundry, with no in-foundry process modifications. This approach allows tight and large-scale monolithic integration of silicon photonics with state-of-the-art (sub-100nm-node) microelectronics, here a 45nm SOI CMOS process. It enables natural scale-up to manufacturing, and rapid advances in device design due to process repeatability. The initial driver application was addressing the processor-to-memory communication energy bottleneck. Device results include 5Gbps modulators based on an interleaved junction that take advantage of the high resolution of the sub-100nm CMOS process. We demonstrate operation at 5fJ/bit with 1.5dB insertion loss and 8dB extinction ratio. We also demonstrate the first infrared detectors in a zero-change CMOS process, using absorption in transistor source/drain SiGe stressors. Subsystems described include the first monolithically integrated electronic-photonic transmitter on chip (modulator+driver) with 20-70fJ/bit wall plug energy/bit (2-3.5Gbps), to our knowledge the lowest transmitter energy demonstrated to date. We also demonstrate native-process infrared receivers at 220fJ/bit (5Gbps). These are encouraging signs for the prospects of monolithic electronics-photonics integration. Beyond processor-to-memory interconnects, our approach to photonics as a “More-than- Moore” technology inside advanced CMOS promises to enable VLSI electronic-photonic chip platforms tailored to a vast array of emerging applications, from optical and acoustic sensing, high-speed signal processing, RF and optical metrology and clocks, through to analog computation and quantum technology.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Photonically Optimized Embedded Microprocessors Program (Award HR0011-11-C-0100)en_US
dc.language.isoen_US
dc.publisherSPIEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/12.2084604en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSPIEen_US
dc.titleMonolithic silicon photonics in a sub-100nm SOI CMOS microprocessor foundry: progress from devices to systemsen_US
dc.typeArticleen_US
dc.identifier.citationPopovic, Milos A., Mark T. Wade, Jason S. Orcutt, Jeffrey M. Shainline, Chen Sun, Michael Georgas, Benjamin Moss, et al. “Monolithic Silicon Photonics in a Sub-100nm SOI CMOS Microprocessor Foundry: Progress from Devices to Systems.” Edited by Graham T. Reed and Michael R. Watts. Silicon Photonics X (April 3, 2015). © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorOrcutt, Jason Scotten_US
dc.contributor.mitauthorGeorgas, Michaelen_US
dc.contributor.mitauthorMoss, Benjamin Royen_US
dc.contributor.mitauthorAlloatti, Lucaen_US
dc.contributor.mitauthorChen, Yu-Hsinen_US
dc.contributor.mitauthorAtabaki, Amir H.en_US
dc.contributor.mitauthorLeu, Jonathan Chungen_US
dc.contributor.mitauthorStojanovic, Vladimiren_US
dc.contributor.mitauthorRam, Rajeev J.en_US
dc.relation.journalProceedings of SPIE--the International Society for Optical Engineeringen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsPopovic, Milos A.; Wade, Mark T.; Orcutt, Jason S.; Shainline, Jeffrey M.; Sun, Chen; Georgas, Michael; Moss, Benjamin; Kumar, Rajesh; Alloatti, Luca; Pavanello, Fabio; Chen, Yu-Hsin; Nammari, Kareem; Notaros, Jelena; Atabaki, Amir; Leu, Jonathan; Stojanovic, Vladimir; Ram, Rajeev J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0259-5541
dc.identifier.orcidhttps://orcid.org/0000-0002-4403-956X
dc.identifier.orcidhttps://orcid.org/0000-0002-1245-4179
dc.identifier.orcidhttps://orcid.org/0000-0001-6542-5606
dc.identifier.orcidhttps://orcid.org/0000-0003-0420-2235
dc.identifier.orcidhttps://orcid.org/0000-0002-5020-5472
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record