MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Single-Photon Depth Imaging Using a Union-of-Subspaces Model

Author(s)
Shin, Dongeek; Shapiro, Jeffrey H.; Goyal, Vivek K
Thumbnail
DownloadShapiro_Single-photon.pdf (826.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Light detection and ranging systems reconstruct scene depth from time-of-flight measurements. For low light-level depth imaging applications, such as remote sensing and robot vision, these systems use single-photon detectors that resolve individual photon arrivals. Even so, they must detect a large number of photons to mitigate Poisson shot noise and reject anomalous photon detections from background light. We introduce a novel framework for accurate depth imaging using a small number of detected photons in the presence of an unknown amount of background light that may vary spatially. It employs a Poisson observation model for the photon detections plus a union-of-subspaces constraint on the discrete-time flux from the scene at any single pixel. Together, they enable a greedy signal-pursuit algorithm to rapidly and simultaneously converge on accurate estimates of scene depth and background flux, without any assumptions on spatial correlations of the depth or background flux. Using experimental single-photon data, we demonstrate that our proposed framework recovers depth features with 1.7 cm absolute error, using 15 photons per image pixel and an illumination pulse with 6.7-cm scaled root-mean-square length. We also show that our framework outperforms the conventional pixelwise log-matched filtering, which is a computationally-efficient approximation to the maximum-likelihood solution, by a factor of 6.1 in absolute depth error.
Date issued
2015-09
URI
http://hdl.handle.net/1721.1/101046
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Signal Processing Letters
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Shin, Dongeek, Jeffrey H. Shapiro, and Vivek K Goyal. “Single-Photon Depth Imaging Using a Union-of-Subspaces Model.” IEEE Signal Process. Lett. 22, no. 12 (December 2015): 2254–2258.
Version: Original manuscript
ISSN
1070-9908
1558-2361

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.