Show simple item record

dc.contributor.authorShin, Dongeek
dc.contributor.authorShapiro, Jeffrey H.
dc.contributor.authorGoyal, Vivek K
dc.date.accessioned2016-02-02T00:36:15Z
dc.date.available2016-02-02T00:36:15Z
dc.date.issued2015-09
dc.date.submitted2015-08
dc.identifier.issn1070-9908
dc.identifier.issn1558-2361
dc.identifier.urihttp://hdl.handle.net/1721.1/101046
dc.description.abstractLight detection and ranging systems reconstruct scene depth from time-of-flight measurements. For low light-level depth imaging applications, such as remote sensing and robot vision, these systems use single-photon detectors that resolve individual photon arrivals. Even so, they must detect a large number of photons to mitigate Poisson shot noise and reject anomalous photon detections from background light. We introduce a novel framework for accurate depth imaging using a small number of detected photons in the presence of an unknown amount of background light that may vary spatially. It employs a Poisson observation model for the photon detections plus a union-of-subspaces constraint on the discrete-time flux from the scene at any single pixel. Together, they enable a greedy signal-pursuit algorithm to rapidly and simultaneously converge on accurate estimates of scene depth and background flux, without any assumptions on spatial correlations of the depth or background flux. Using experimental single-photon data, we demonstrate that our proposed framework recovers depth features with 1.7 cm absolute error, using 15 photons per image pixel and an illumination pulse with 6.7-cm scaled root-mean-square length. We also show that our framework outperforms the conventional pixelwise log-matched filtering, which is a computationally-efficient approximation to the maximum-likelihood solution, by a factor of 6.1 in absolute depth error.en_US
dc.description.sponsorshipSamsung (Firm) (Scholarship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1422034)en_US
dc.description.sponsorshipLincoln Laboratory. Advanced Concepts Committeeen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/lsp.2015.2475274en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleSingle-Photon Depth Imaging Using a Union-of-Subspaces Modelen_US
dc.typeArticleen_US
dc.identifier.citationShin, Dongeek, Jeffrey H. Shapiro, and Vivek K Goyal. “Single-Photon Depth Imaging Using a Union-of-Subspaces Model.” IEEE Signal Process. Lett. 22, no. 12 (December 2015): 2254–2258.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorShin, Dongeeken_US
dc.contributor.mitauthorShapiro, Jeffrey H.en_US
dc.relation.journalIEEE Signal Processing Lettersen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsShin, Dongeek; Shapiro, Jeffrey H.; Goyal, Vivek Ken_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9289-829X
dc.identifier.orcidhttps://orcid.org/0000-0002-6094-5861
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record