MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Doubly infinite separation of quantum information and communication

Author(s)
Liu, Zi-Wen; Perry, Christopher; Zhu, Yechao; Koh, Dax Enshan; Aaronson, Scott
Thumbnail
DownloadPhysRevA.93.012347.pdf (316.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We prove the existence of (one-way) communication tasks with a subconstant versus superconstant asymptotic gap, which we call “doubly infinite,” between their quantum information and communication complexities. We do so by studying the exclusion game [C. Perry et al., Phys. Rev. Lett. 115, 030504 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.030504] for which there exist instances where the quantum information complexity tends to zero as the size of the input n increases. By showing that the quantum communication complexity of these games scales at least logarithmically in n, we obtain our result. We further show that the established lower bounds and gaps still hold even if we allow a small probability of error. However in this case, the n-qubit quantum message of the zero-error strategy can be compressed polynomially.
Date issued
2016-01
URI
http://hdl.handle.net/1721.1/101073
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mathematics; Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review A
Publisher
American Physical Society
Citation
Liu, Zi-Wen, Christopher Perry, Yechao Zhu, Dax Enshan Koh, and Scott Aaronson. "Doubly infinite separation of quantum information and communication." Phys. Rev. A 93, 012347 (January 2016). © 2016 American Physical Society
Version: Final published version
ISSN
1050-2947
1094-1622

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.