MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A globally convergent incremental Newton method

Author(s)
Gurbuzbalaban, Mert; Ozdaglar, Asuman E.; Parrilo, Pablo A.
Thumbnail
DownloadOzdaglar_A globally.pdf (276.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Motivated by machine learning problems over large data sets and distributed optimization over networks, we develop and analyze a new method called incremental Newton method for minimizing the sum of a large number of strongly convex functions. We show that our method is globally convergent for a variable stepsize rule. We further show that under a gradient growth condition, convergence rate is linear for both variable and constant stepsize rules. By means of an example, we show that without the gradient growth condition, incremental Newton method cannot achieve linear convergence. Our analysis can be extended to study other incremental methods: in particular, we obtain a linear convergence rate result for the incremental Gauss–Newton algorithm under a variable stepsize rule.
Date issued
2015-04
URI
http://hdl.handle.net/1721.1/101383
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Mathematical Programming
Publisher
Springer-Verlag
Citation
Gurbuzbalaban, M., A. Ozdaglar, and P. Parrilo. “A Globally Convergent Incremental Newton Method.” Math. Program. 151, no. 1 (April 11, 2015): 283–313.
Version: Original manuscript
ISSN
0025-5610
1436-4646

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.