Show simple item record

dc.contributor.authorGurbuzbalaban, Mert
dc.contributor.authorOzdaglar, Asuman E.
dc.contributor.authorParrilo, Pablo A.
dc.date.accessioned2016-03-01T19:29:07Z
dc.date.available2016-03-01T19:29:07Z
dc.date.issued2015-04
dc.date.submitted2014-10
dc.identifier.issn0025-5610
dc.identifier.issn1436-4646
dc.identifier.urihttp://hdl.handle.net/1721.1/101383
dc.description.abstractMotivated by machine learning problems over large data sets and distributed optimization over networks, we develop and analyze a new method called incremental Newton method for minimizing the sum of a large number of strongly convex functions. We show that our method is globally convergent for a variable stepsize rule. We further show that under a gradient growth condition, convergence rate is linear for both variable and constant stepsize rules. By means of an example, we show that without the gradient growth condition, incremental Newton method cannot achieve linear convergence. Our analysis can be extended to study other incremental methods: in particular, we obtain a linear convergence rate result for the incremental Gauss–Newton algorithm under a variable stepsize rule.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (FA9550-09-1-0538)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Basic Research Challenge N000141210997)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s10107-015-0897-yen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleA globally convergent incremental Newton methoden_US
dc.typeArticleen_US
dc.identifier.citationGurbuzbalaban, M., A. Ozdaglar, and P. Parrilo. “A Globally Convergent Incremental Newton Method.” Math. Program. 151, no. 1 (April 11, 2015): 283–313.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorGurbuzbalaban, Merten_US
dc.contributor.mitauthorOzdaglar, Asuman E.en_US
dc.contributor.mitauthorParrilo, Pablo A.en_US
dc.relation.journalMathematical Programmingen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsGurbuzbalaban, M.; Ozdaglar, A.; Parrilo, P.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1827-1285
dc.identifier.orcidhttps://orcid.org/0000-0002-0575-2450
dc.identifier.orcidhttps://orcid.org/0000-0003-1132-8477
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record