MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits

Author(s)
Labousse, M.; Oza, Anand Uttam; Perrard, S.; Bush, John W. M.
Thumbnail
DownloadPhysRevE.93.033122.pdf (778.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet's horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed.
Date issued
2016-03
URI
http://hdl.handle.net/1721.1/101774
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Physical Review E
Publisher
American Physical Society
Citation
Labousse, M., A. U. Oza, S. Perrard, and J. W. M. Bush. “Pilot-Wave Dynamics in a Harmonic Potential: Quantization and Stability of Circular Orbits.” Phys. Rev. E 93, no. 3 (March 23, 2016). © 2016 American Physical Society
Version: Final published version
ISSN
2470-0045
2470-0053

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.