| dc.contributor.author | Labousse, M. | |
| dc.contributor.author | Oza, Anand Uttam | |
| dc.contributor.author | Perrard, S. | |
| dc.contributor.author | Bush, John W. M. | |
| dc.date.accessioned | 2016-03-24T15:43:11Z | |
| dc.date.available | 2016-03-24T15:43:11Z | |
| dc.date.issued | 2016-03 | |
| dc.date.submitted | 2015-11 | |
| dc.identifier.issn | 2470-0045 | |
| dc.identifier.issn | 2470-0053 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/101774 | |
| dc.description.abstract | We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet's horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed. | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (Grant CMMI-1333242) | en_US |
| dc.publisher | American Physical Society | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1103/PhysRevE.93.033122 | en_US |
| dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
| dc.source | American Physical Society | en_US |
| dc.title | Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Labousse, M., A. U. Oza, S. Perrard, and J. W. M. Bush. “Pilot-Wave Dynamics in a Harmonic Potential: Quantization and Stability of Circular Orbits.” Phys. Rev. E 93, no. 3 (March 23, 2016). © 2016 American Physical Society | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.contributor.mitauthor | Bush, John W. M. | en_US |
| dc.relation.journal | Physical Review E | en_US |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2016-03-23T22:00:15Z | |
| dc.language.rfc3066 | en | |
| dc.rights.holder | American Physical Society | |
| dspace.orderedauthors | Labousse, M.; Oza, A. U.; Perrard, S.; Bush, J. W. M. | en_US |
| dc.identifier.orcid | https://orcid.org/0000-0002-7936-7256 | |
| mit.license | PUBLISHER_POLICY | en_US |