MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical dynamics of continuous systems: perturbative and approximative approaches

Author(s)
Finkelshtein, Dmitri; Kondratiev, Yuri; Kutovyi, Oleksandr
Thumbnail
DownloadFinkelshtein-2015-Statistical dynamics.pdf (1.079Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We discuss general concept of Markov statistical dynamics in the continuum. For a class of spatial birth-and-death models, we develop a perturbative technique for the construction of statistical dynamics. Particular examples of such systems are considered. For the case of Glauber type dynamics in the continuum we describe a Markov chain approximation approach that gives more detailed information about statistical evolution in this model.
Date issued
2014-07
URI
http://hdl.handle.net/1721.1/101898
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Arabian Journal of Mathematics
Publisher
Springer-Verlag
Citation
Finkelshtein, Dmitri, Yuri Kondratiev, and Oleksandr Kutoviy. “Statistical Dynamics of Continuous Systems: Perturbative and Approximative Approaches.” Arab. J. Math. 4, no. 4 (July 30, 2014): 255–300.
Version: Final published version
ISSN
2193-5343
2193-5351

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.