Show simple item record

dc.contributor.authorFinkelshtein, Dmitri
dc.contributor.authorKondratiev, Yuri
dc.contributor.authorKutovyi, Oleksandr
dc.date.accessioned2016-03-28T19:05:11Z
dc.date.available2016-03-28T19:05:11Z
dc.date.issued2014-07
dc.date.submitted2014-02
dc.identifier.issn2193-5343
dc.identifier.issn2193-5351
dc.identifier.urihttp://hdl.handle.net/1721.1/101898
dc.description.abstractWe discuss general concept of Markov statistical dynamics in the continuum. For a class of spatial birth-and-death models, we develop a perturbative technique for the construction of statistical dynamics. Particular examples of such systems are considered. For the case of Glauber type dynamics in the continuum we describe a Markov chain approximation approach that gives more detailed information about statistical evolution in this model.en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s40065-014-0111-8en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer-Verlagen_US
dc.titleStatistical dynamics of continuous systems: perturbative and approximative approachesen_US
dc.typeArticleen_US
dc.identifier.citationFinkelshtein, Dmitri, Yuri Kondratiev, and Oleksandr Kutoviy. “Statistical Dynamics of Continuous Systems: Perturbative and Approximative Approaches.” Arab. J. Math. 4, no. 4 (July 30, 2014): 255–300.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorKutovyi, Oleksandren_US
dc.relation.journalArabian Journal of Mathematicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFinkelshtein, Dmitri; Kondratiev, Yuri; Kutoviy, Oleksandren_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record