MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Polychiral Semiconducting Carbon Nanotube–Fullerene Solar Cells

Author(s)
Gong, Maogang; Shastry, Tejas A.; Xie, Yu; Bernardi, Marco; Jasion, Daniel; Luck, Kyle A.; Marks, Tobin J.; Grossman, Jeffrey C.; Ren, Shenqiang; Hersam, Mark C.; ... Show more Show less
Thumbnail
DownloadGrossman_Polychiral semiconducting.pdf (360.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Single-walled carbon nanotubes (SWCNTs) have highly desirable attributes for solution-processable thin-film photovoltaics (TFPVs), such as broadband absorption, high carrier mobility, and environmental stability. However, previous TFPVs incorporating photoactive SWCNTs have utilized architectures that have limited current, voltage, and ultimately power conversion efficiency (PCE). Here, we report a solar cell geometry that maximizes photocurrent using polychiral SWCNTs while retaining high photovoltage, leading to record-high efficiency SWCNT–fullerene solar cells with average NREL certified and champion PCEs of 2.5% and 3.1%, respectively. Moreover, these cells show significant absorption in the near-infrared portion of the solar spectrum that is currently inaccessible by many leading TFPV technologies.
Date issued
2014-08
URI
http://hdl.handle.net/1721.1/101937
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Nano Letters
Publisher
American Chemical Society (ACS)
Citation
Gong, Maogang, Tejas A. Shastry, Yu Xie, Marco Bernardi, Daniel Jasion, Kyle A. Luck, Tobin J. Marks, Jeffrey C. Grossman, Shenqiang Ren, and Mark C. Hersam. “Polychiral Semiconducting Carbon Nanotube–Fullerene Solar Cells.” Nano Lett. 14, no. 9 (September 10, 2014): 5308–5314.
Version: Author's final manuscript
ISSN
1530-6984
1530-6992

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.